Kurs:Grundkurs Mathematik/Teil II/T2/Klausur mit Lösungen

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Punkte 3 3 4 2 3 1 7 3 3 2 2 4 3 3 3 3 4 3 4 4 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Ein Repräsentantensystem zu einer Äquivalenzrelation auf einer Menge .
  2. Die Quotientenmenge zu einer Äquivalenzrelation auf einer Menge .
  3. Ein Ringhomomorphismus

    zwischen Ringen und .

  4. Die Konvergenz einer Folge in einem angeordneten Körper gegen .
  5. Eine Cauchy-Folge in einem angeordneten Körper .
  6. Die Eulersche Zahl.


Lösung

  1. Eine Teilmenge heißt ein Repräsentantensystem für die Äquivalenzrelation, wenn es für jede Äquivalenzklasse genau ein Element aus aus dieser Klasse gibt.
  2. Man nennt

    die Quotientenmenge von .

  3. Die Abbildung

    heißt Ringhomomorphismus, wenn folgende Eigenschaften gelten:

    1. .
  4. Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  5. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist: Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  6. Die Eulersche Zahl ist durch

    definiert.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die algebraische Struktur der Quotientenmenge zu einer Untergruppe in einer kommutativen Gruppe .
  2. Das Quetschkriterium für Folgen in einem angeordneten Körper .
  3. Der Satz über die Intervallschachtelung.


Lösung

  1. Es sei eine kommutative Gruppe, eine Untergruppe und die Quotientenmenge zur durch definierten Äquivalenzrelation auf mit der kanonischen Projektion
    Dann gibt es eine eindeutig bestimmte Gruppenstruktur auf derart, dass ein Gruppenhomomorphismus ist.
  2. Es sei ein angeordneter Körper, und es seien und drei Folgen in . Es gelte

    und und

    konvergieren beide gegen den gleichen Grenzwert . Dann konvergiert auch gegen diesen Grenzwert .
  3. Es sei , , eine Intervallschachtelung in . Dann besteht der Durchschnitt
    aus genau einem Punkt .


Aufgabe (4 Punkte)

Es seien und endliche Mengen mit bzw. Elementen und sei

eine surjektive Abbildung. Wie viele Abbildungen

mit

gibt es?


Lösung

Die Elemente aus seien mit bezeichnet. Zu jedem sei

und

die Anzahl der Elemente aus , die auf abgebildet werden. Wegen der Surjektivität ist stets . Da

gelten soll, muss für jedes gelten. Somit gibt es

Möglichkeiten für solche Abbildungen.


Aufgabe (2 Punkte)

Zeige, dass die auf durch

festgelegte Relation eine Äquivalenzrelation ist.


Lösung

Die Reflexivität und die Symmetrie ergeben sich unmittelbar aus der Definition. Zum Nachweis der Transitivität seien und . Dies bedeutet bzw. . Somit ist

Wegen ergibt die Kürzungsregel in die Gleichheit

also .


Aufgabe (3 Punkte)

Es sei ein Körper. Wir betrachten die Abbildung

Welche Eigenschaften eines Ringhomomorphismus erfüllt die Abbildung , welche nicht?


Lösung

Es ist

die Abbildung ist also mit der Addition verträglich.

Es ist

die Abbildung ist also mit der Multiplikation verträglich.

Es ist

die Abbildung bildet also nicht die auf die ab. Insgesamt liegt kein Ringhomomorphismus vor.


Aufgabe (1 Punkt)

Erstelle eine Multiplikationstafel für den Restklassenring .


Lösung


Aufgabe (7 Punkte)

Beweise den Satz über die Körpereigenschaft der Restklassenringe .


Lösung

Bei ist der Restklassenring gleich selbst und kein Körper. Bei besteht der Restklassenring aus nur einem Element und es ist . Dies ist bei einem Körper explizit ausgeschlossen, und ist keine Primzahl. Sei also von nun an . Wenn keine Primzahl ist, so gibt es eine Darstellung

mit kleineren Zahlen

Im Restklassenring bedeutet dies, dass die Restklassen und nicht sind, dass aber ihr Produkt

ist. Das kann nach Lemma 23.12 (Grundkurs Mathematik (Osnabrück 2016-2017)) in einem Körper nicht sein.

Sei nun eine Primzahl. Wir müssen zeigen, dass jede von verschiedene Restklasse , , ein inverses Element besitzt. Da prim ist, sind und teilerfremd. Nach dem Lemma von Bezout gibt es ganze Zahlen mit

Dies führt im Restklassenring zur Identität

die besagt, dass und invers zueinander sind.


Aufgabe (3 Punkte)

Bestimme das inverse Element zu in .


Lösung

Der euklidische Algorithmus liefert

Somit ist

Daher ist

das inverse Element zu in .


Aufgabe (3 Punkte)

Löse das folgende lineare Gleichungssystem über dem Körper .


Lösung

Das inverse Element zu in ist , somit ist in die Variable eliminiert. Dies ergibt

Somit ist

und aus

ergibt sich

und somit

Die einzige Lösung ist also .


Aufgabe (2 Punkte)

Drücke

mit einer einzigen Wurzel aus.


Lösung

Es ist


Aufgabe (2 Punkte)

Berechne


Lösung

Es ist


Aufgabe (4 Punkte)

Es sei ein angeordneter Körper und seien rationale Zahlen. Zeige, dass es eine bijektive streng wachsende Abbildung

gibt, die rationale Zahlen in rationale Zahlen überführt.


Lösung

Wir definieren die Abbildung durch

Da es sich bis auf die Verschiebung um um eine lineare Funktion mit einem positiven Proportionalitätsfaktor handelt, ist sie nach Lemma 25.15 (Grundkurs Mathematik (Osnabrück 2016-2017))  (1) streng wachsend und auch bijektiv. Es ist offenbar und . Somit ist

und die Abbildung lässt sich auf die Intervalle zu einer bijektiven Abbildung einschränken. Für eine rationale Zahl ist

wegen der Rationalität von und wieder rational.


Aufgabe (3 Punkte)

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu mit dem Startwert durch (es sollen also die Approximationen für berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden).


Lösung

Die Formel für lautet

Daher ist

Somit ist

Schließlich ist


Aufgabe (3 Punkte)

Es sei ein Element in einem angeordneten Körper und sei die Heron-Folge zur Berechnung von mit dem Startwert . Sei , , und die Heron-Folge zur Berechnung von mit dem Startwert . Zeige

für alle .


Lösung

Wir beweisen die Aussage durch Induktion nach , wobei die Induktionsvoraussetzung direkt durch die Wahl des Startwerts gesichert ist. Es gelte also

Dann ist


Aufgabe (3 Punkte)

Entscheide, ob die Folge

in konvergiert und bestimme gegebenenfalls den Grenzwert.


Lösung

Für kann man die Folge (durch Erweiterung mit ) als

schreiben. Folgen vom Typ und sind Nullfolgen. Aufgrund der Summenregel für konvergente Folgen konvergiert der Zähler gegen und der Nenner gegen , so dass nach der Quotientenregel die Folge insgesamt gegen konvergiert.


Aufgabe (3 Punkte)

Es sei ein angeordneter Körper, es sei eine Nullfolge in und eine beschränkte Folge in . Zeige, dass dann auch die Produktfolge eine Nullfolge ist.


Lösung

Sei eine Schranke für und sei vorgegeben. Da eine Nullfolge ist, gibt es zu ein derart, dass für die Abschätzung gilt. Für diese Indizes ist dann auch


Aufgabe (4 Punkte)

Es sei ein angeordneter Körper. Es sei eine Cauchy-Folge in , die eine konvergente Teilfolge enthalte. Zeige, dass die Folge konvergiert.


Lösung

Es sei , , eine konvergente Teilfolge mit dem Grenzwert . Wir behaupten, dass die Folge ebenfalls gegen konvergiert. Sei dazu vorgegeben. Wegen der Konvergenz der Teilfolge gibt es ein derart, dass für alle die Abschätzung

gilt. Da eine Cauchy-Folge vorliegt gibt es ein derart, dass für alle die Abschätzung

gilt. Daher gilt für unter Verwendung eines mit die Abschätzung


Aufgabe (3 Punkte)

Bestimme die rationale Zahl, die im Dezimalsystem durch

gegeben ist.


Lösung

Es ist


Aufgabe (4 Punkte)

Erläutere, wie man Lücken auf der Zahlengeraden erkennen und auffüllen kann.


Lösung Reelle Zahlen/Lücken/Auffüllen/Aufgabe/Lösung


Aufgabe (4 Punkte)

Es seien und zwei nichtnegative reelle Zahlen. Zeige, dass das arithmetische Mittel der beiden Zahlen mindestens so groß wie ihr geometrisches Mittel ist.


Lösung

Wir wollen

zeigen. Durch Quadrieren ist dies äquivalent zu

bzw. zu

Wegen

ist dies in der Tat wahr.