Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil II/Arbeitsblatt 43/kontrolle
- Übungsaufgaben
Multipliziere in die beiden Polynome
Multipliziere in die beiden Polynome
Zeige, dass im Polynomring über einem Körper das Ideal kein Hauptideal ist.
Skizziere im die Lösungsmenge der folgenden Gleichungen.
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- .
In den folgenden Aufgaben ist Standardform im Sinne von
Satz 43.9
zu verstehen. Es muss die neue Basis, die Variablentransformation
(Koordinatentransformation)
und das vereinfachte quadratische Polynom angegeben werden.
In der folgenden Aufgabe geht es um zwei Definitionen für eine Ellipse.
Es seien zwei Punkte, und es sei
Zeige, dass die Nullstellenmenge einer quadratischen Gleichung in zwei Variablen ist. Wie sieht die Standardgestalt aus? Was sind die Hauptachsen?
Tipp: Führe die beschriebene Situation auf den Fall zurück, wo und .
Unter normierter Standardgestalt verstehen wir eine quadratische Form, bei der die nichtkonstanten Koeffizienten nur den Wert haben dürfen. Dies kann man durch Verzerrungen stets erreichen (wobei aber die Orthogonalität verloren geht).
Bestimme die normierte Standardgestalt der reellen Quadrik
Welche der rechts skizzierten Quadriken kann man (in welchem Sinne) mit weniger als drei Variablen beschreiben?
Bestimme, welche Quadriken aus Beispiel 43.12 sich als Graph und welche sich als Rotationsfläche beschreiben lassen.
Bestimme die normierte Standardgestalt der reellen Quadrik
Bestimme die normierte Standardgestalt der reellen Quadrik
Es sei ein Minkowski-Raum der Dimension . Wir betrachten die Menge
Für welche ist wegzusammenhängend, für welche zerfällt es in verschiedene Komponenten?
Es sei ein Minkowski-Raum der Dimension . Wir betrachten die Menge
Es sei der Beobachtervektor eines Beobachters und es sei seine Raumkomponente. Welche Gestalt besitzt ?
Es sei
Bestimme die Punkte , für die der Abstand der zugehörigen Kurvenpunkte zum Punkt minimal wird.
Wir betrachten die Kurve
a) Zeige, dass die Bildpunkte der Kurve die Gleichung
erfüllen.
b) Zeige, dass jeder Punkt
mit
zum Bild der Kurve gehört.
c) Zeige, dass es genau zwei Punkte
und
mit identischem Bildpunkt gibt, und dass ansonsten die Abbildung injektiv ist.
Es sei das Bild unter der polynomialen Abbildung
Bestimme ein Polynom in zwei Variablen derart, dass auf dem Nullstellengebilde zu liegt.
Es sei der Graph der Standardparabel
und die Rotationsfläche zu um die -Achse.
- Zeige, dass durch keine Quadrik beschrieben wird.
- Zeige, dass die Nullstellenmenge eines Polynoms in drei Variablen ist.
Es sei eine hermitesche Form mit der Gramschen Matrix (bezüglich einer Basis). Zeige, dass die Determinante von reell ist.
Es sei eine hermitesche Form mit der Gramschen Matrix (bezüglich einer Basis). Zeige, dass das charakteristische Polynom von reelle Koeffizienten besitzt.
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)Referenznummer erstellen
Wie viele Monome vom Grad gibt es im Polynomring in einer, in zwei und in drei Variablen?
Aufgabe (4 Punkte)Referenznummer erstellen
Bestimme alle Lösungen der Kreisgleichung
für die Körper , , und .
Aufgabe (6 Punkte)Referenznummer erstellen
Aufgabe (10 (4+6) Punkte)Referenznummer erstellen
Wir betrachten den Kegel
und es sei eine affine Ebene. Der Durchschnitt heißt Kegelschnitt.
- Zeige, dass jeder Kegelschnitt
in geeigneten Koordinaten des als Nullstellenmenge eines quadratischen Polynoms in beschrieben werden kann.
- Bestimme, welche der Quadriken aus Beispiel 43.8 sich als Kegelschnitte realisieren lassen.
Aufgabe (4 Punkte)Referenznummer erstellen
Bestimme die normierte Standardgestalt der reellen Quadrik
<< | Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil II | >> |
---|