Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Arbeitsblatt 23

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe

Drücke in den Vektor

als Linearkombination der Vektoren

aus.


Aufgabe

Drücke in den Vektor

als Linearkombination der Vektoren

aus.


Aufgabe

Es sei ein Körper und ein -Vektorraum. Es sei , , eine Familie von Vektoren in und ein weiterer Vektor. Es sei vorausgesetzt, dass die Familie

ein Erzeugendensystem von ist und dass sich als Linearkombination der , , darstellen lässt. Zeige, dass dann schon , , ein Erzeugendensystem von ist.


Aufgabe

Es sei ein Körper und ein -Vektorraum. Beweise folgende Aussagen.

  1. Sei , , eine Familie von Untervektorräumen von . Dann ist auch der Durchschnitt
    ein Untervektorraum.
  2. Zu einer Familie , , von Elementen in ist der erzeugte Unterraum ein Unterraum.
  3. Die Familie , , ist genau dann ein Erzeugendensystem von , wenn

    ist.


Aufgabe

Wir betrachten im die Untervektorräume

und

Zeige .


Aufgabe

Zeige, dass die drei Vektoren

im linear unabhängig sind.


Aufgabe

Man gebe im drei Vektoren an, so dass je zwei von ihnen linear unabhängig sind, aber alle drei zusammen linear abhängig.


Aufgabe

Sei ein Körper, ein -Vektorraum und , , eine Familie von Vektoren in . Beweise die folgenden Aussagen.

  1. Wenn die Familie linear unabhängig ist, so ist auch zu jeder Teilmenge die Familie  , , linear unabhängig.
  2. Die leere Familie ist linear unabhängig.
  3. Wenn die Familie den Nullvektor enthält, so ist sie nicht linear unabhängig.
  4. Wenn in der Familie ein Vektor mehrfach vorkommt, so ist sie nicht linear unabhängig.
  5. Ein Vektor ist genau dann linear unabhängig, wenn ist.
  6. Zwei Vektoren und sind genau dann linear unabhängig, wenn weder ein skalares Vielfaches von ist noch umgekehrt.


Aufgabe

Es sei ein Körper, ein -Vektorraum und sei , , eine Familie von Vektoren in . Es sei , , eine Familie von Elementen aus . Zeige, dass die Familie , , genau dann linear unabhängig (ein Erzeugendensystem von , eine Basis von ) ist, wenn dies für die Familie , , gilt.


Aufgabe

Bestimme eine Basis für den Lösungsraum der linearen Gleichung


Aufgabe

Bestimme eine Basis für den Lösungsraum des linearen Gleichungssystems


Aufgabe

Zeige, dass im die drei Vektoren

eine Basis bilden.


Aufgabe

Bestimme, ob im die beiden Vektoren

eine Basis bilden.


Aufgabe

Es sei ein Körper. Man finde ein lineares Gleichungssystem in drei Variablen, dessen Lösungsraum genau

ist.


Aufgabe *

Es sei ein Körper und sei

ein von verschiedener Vektor. Man finde ein lineares Gleichungssystem in Variablen mit Gleichungen, dessen Lösungsraum genau

ist.





Übungsaufgaben

Aufgabe

Es sei ein Körper und ein -Vektorraum mit endlicher Dimension . Es seien Vektoren in gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

  1. bilden eine Basis von .
  2. bilden ein Erzeugendensystem von .
  3. sind linear unabhängig.


Aufgabe

Es sei ein Körper und sei der Polynomring über . Sei . Zeige, dass die Menge aller Polynome vom Grad ein endlichdimensionaler Untervektorraum von ist. Was ist seine Dimension?


Aufgabe

Zeige, dass die Menge aller reellen Polynome vom Grad , für die und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.


Aufgabe *

Es sei ein Körper und es seien und endlichdimensionale -Vektorräume mit und . Welche Dimension besitzt der Produktraum ?


Aufgabe

Es sei ein endlichdimensionaler Vektorraum über den komplexen Zahlen, und sei eine Basis von . Zeige, dass die Vektorenfamilie

eine Basis von , aufgefasst als reeller Vektorraum, ist.


Aufgabe

Es sei die Standardbasis im gegeben und die drei Vektoren

Zeige, dass diese Vektoren linear unabhängig sind und ergänze sie mit einem geeigneten Standardvektor gemäß Fakt ***** zu einer Basis. Kann man jeden Standardvektor nehmen?




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Wir betrachten im die Untervektorräume

und

Zeige .


Aufgabe (3 Punkte)

Drücke in den Vektor

als Linearkombination der Vektoren

aus. Zeige, dass man ihn nicht als Linearkombination von zweien der drei Vektoren ausdrücken kann.


Aufgabe (2 Punkte)

Bestimme, ob im die drei Vektoren

eine Basis bilden.


Aufgabe (2 Punkte)

Bestimme, ob im die beiden Vektoren

eine Basis bilden.


Aufgabe (4 Punkte)

Es sei der -dimensionale Standardraum über und sei eine Familie von Vektoren. Zeige, dass diese Familie genau dann eine -Basis des ist, wenn diese Familie aufgefasst im eine -Basis des bildet.


Aufgabe (4 Punkte)

Zeige, dass die Menge aller reellen Polynome vom Grad , für die , und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.


Aufgabe (3 Punkte)

Es sei ein Körper und ein -Vektorraum. Es sei eine Familie von Vektoren in und sei

der davon aufgespannte Untervektorraum. Zeige, dass die Familie genau dann linear unabhängig ist, wenn die Dimension von gleich ist.



<< | Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)