Schema/Lokal freie Garbe/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Ein -Modul auf einem beringten Raum heißt lokal frei vom Rang , wenn es eine offene Überdeckung und -Modulisomorphismen für jedes gibt.

Für erhält man die invertierbaren Garben, diese sind einfach die lokal freien Garben vom Rang . Die einfachsten lokal freien Garben sind die freien Garben ist (zu ). Gemäß der Definition ist eine lokal freie Garbe lokal, also auf einer Überdeckung aus offenen Mengen, frei. Lokal lassen sich also freie Garben und lokal freie Garben nicht unterscheiden. Lokal freie Garben reflektieren daher globale Eigenschaften des beringten Raumes .

Wir betrachten lokal freie Garben auf Schemata, wo sich enge Beziehungen zu projektiven und flachen Moduln ergeben. Lokal freie Garben sind insbesondere kohärente Moduln. Über einem lokalen Ring sind alle lokal freien Garben frei, da das Spektrum nur einen abgeschlossenen Punkt enthält und dieser nur die Gesamtmenge als offene Umgebung besitzt. Wenn man jedoch zu einem lokalen Ring das punktierte Spektrum betrachtet, so gibt es darauf in der Regel viele nichttriviale (nichtfreie) lokal freie Garben, die Eigenschaften des lokalen Ringes (der Singularität) widerspiegeln. Da jedes Schema durch affine Schemata überdeckt wird, muss man insbesondere zuerst die lokal freien Garben auf einem affinen Schema verstehen.



Satz  

Sei ein kommutativer noetherscher Ring und sei ein endlich erzeugter -Modul. Sei . Dann sind die folgenden Eigenschaften äquivalent.

  1. Die Lokalisierungen sind frei vom Rang für jedes Primideal .
  2. Die Lokalisierungen sind frei vom Rang für jedes maximale Ideal von .
  3. Es gibt Elemente , die das Einheitsideal erzeugen derart, dass die Nenneraufnahmen für jedes . frei vom Rang sind.
  4. Die zu gehörige kohärente Garbe auf ist lokal frei vom Rang .

Beweis  

. Dies ist eine Spezialisierung.
. Wir fixieren ein maximales Ideal . Nach Voraussetzung gibt es einen -Modulisomorphismus

Wir schreiben das Bild des -ten Standardvektors als

mit und . Es sei das Produkt der Nenner. Wir betrachten die Situation über . Der Isomorphismus ist über (auf ) definiert, d.h. wir haben einen -Modulhomomorphismus

der in der Lokalisierung an den Isomorphismus induziert. Allerdings ist im Allgemeinen kein Isomorphismus. Es sei ein Erzeugendensystem für den Modul . Da auf eine Surjektion induziert, gibt es Elemente , die nach abbilden. Die Nenner gehören nicht zu , daher können wir durch ersetzen und erhalten

mit Elementen derart, dass die in auf die Erzeuger einschränken. Dies bedeutet, dass es Elemente mit in gibt. Wenn man durch ersetzt, erhält man, dass ebenfalls surjektiv ist. Es sei der Kern von (diesem neuen) . Da injektiv ist, gilt . Da noethersch ist, ist nach Fakt endlich erzeugt und so gibt es wiederum ein Element , , mit . Indem wir weiter verkleinern erhalten wir einen Isomorphismus für ein , .

Wir wissen also, dass es zu jedem maximalen Ideal eine offene Umgebung derart gibt, dass frei vom Rang ist. Daher enthält

alle maximalen Ideale und auch alle Primideale, es liegt also eine offene Überdeckung von vor. Daher ist nach Fakt  (4) das Einheitsideal, und dieses wird bereits von endlich vielen der erzeugt.
. Da die Elemente das Einheitsideal erzeugen, überdecken die zugehörigen offenen Mengen , , das Spektrum . Da freie -Moduln vom Rang sind, liegen -Modulisomorphismen vor. Daher ist lokal frei.
. Sei ein Primideal. Die lokale Freiheit bedeutet, dass wir eine offene Überdeckung derart haben, dass die frei vom Rang sind. Somit gibt es einen Index mit . Indem wir zu einer eventuell kleineren offenen Umgebung von übergehen können wir mit übergehen. Dabei gilt, dass frei vom Rang ist. Doch dann ist erst recht die Lokalisierung frei vom Rang .


Das Beispiel aus Aufgabe zeigt, dass es bei einem nichtnoetherschen Ring einem Modul mit geben kann, ohne dass diese Isomorphie auf eine offene Umgebung fortsetzbar ist.

Wir setzen lokal freie Moduln in Bezug zu projektiven Moduln.


Definition  

Es sei ein kommutativer Ring und ein -Modul. Der Modul heißt projektiv, wenn es zu jedem surjektiven -Modulhomomorphismus

und jedem Modulhomomorphismus

einen Modulhomomorphismus

mit

gibt.

Ein Modul ist genau dann projektiv, wenn er ein direkter Summand von einem freien Modul ist.



Lemma  

Es sei ein kommutativer lokaler Ring und ein endlich erzeugter -Modul. Dann ist genau dann frei, wenn ein projektiver Modul ist.

Beweis  

Dass freie Moduln projektiv sind wurde in Fakt bewiesen. Sei also projektiv. Es sei ein minimales Erzeugendensystem von und sei

der zugehörige surjektive Modulhomomorphismus. Wegen der Minimalität ist

eine -lineare bijektive Abbildung. Wegen der Projektivität gibt es einen Modulhomomorphismus mit . Dann ist

mit und wobei wir mit identifizieren. Wir betrachten nun

und die induzierten -linearen Abbildungen

Hierbei ist sowohl die Abbildung links als auch die Gesamtabbildung bijektiv. Daher muss sein. Aus Fakt folgt und somit ist frei.




Lemma  

Es sei ein noetherscher kommutativer Ring und ein endlich erzeugter -Modul. Dann ist genau dann lokal frei, wenn ein projektiver Modul ist.

Beweis  

Die eine Richtung folgt direkt aus Fakt unter Berücksichtigung von Aufgabe. Zum Beweis der Umkehrung sei ein surjektiver Modulhomomorphismus mit einem endlich erzeugten freien -Modul . Es ist zu zeigen, dass es einen Homomorphismus mit gibt. Dies ist insbesondere dann gesichert, wenn man zeigen kann, dass der natürliche Homomorphismus

surjektiv ist, da ja dann insbesondere die Identität getroffen wird. Nach Fakt kann man die Surjektivität lokal testen. Für die Homomorphismenmoduln gilt unter den gegebenen Endlichkeitsvoraussetzungen

Die Surjektivität von

folgt aber für jedes Primideal aus der Freiheit von und Fakt.


Es gilt ferner der folgende Satz, den wir nicht beweisen.


Satz

Es sei ein kommutativer noetherscher Ring und ein endlich erzeugter -Modul. Dann sind folgende Aussagen äquivalent.

  1. ist lokal frei.
  2. ist ein projektiver Modul.
  3. ist ein flacher Modul.

Mit dem folgenden Satz erhält man viele lokal freie Garben, die im Allgemeinen nicht trivial sind.



Satz  

Sei ein noethersches Schema und sei

ein surjektiver Garbenhomomorphismus zwischen lokal freien Garben auf .

Dann ist der Kern von ebenfalls lokal frei.

Beweis  

Da die lokale Freiheit eine lokale Eigenschaft ist, können wir direkt annehmen, dass

ein affines Schema zu einem noetherschen Ring ist und (durch weitere Verkleinerung der offenen Menge) dass ein surjektiver Modulhomomorphismus vorliegt. Nach Fakt gibt es ein mit

Somit gibt es eine direkte Summenzerlegung

und ist die Projektion auf den Summanden . Damit ist nach Fakt ein projektiver -Modul und nach Fakt lokal frei.


Bemerkung  

Zu Elementen in einem kommutativen Ring gehört der Modulhomomorphismus , . Das Bild ist das von den erzeugte Ideal, insbesondere ist diese Abbildung nur dann surjektiv, wenn die das Einheitsideal erzeugen. Der zugehörige Modulhomomorphismus ist im Allgemeinen auch nicht surjektiv und der Kern ist im Allgemeinen nicht lokal frei. Wenn man allerdings die Einschränkung dieses Garbenhomomorphismus auf die offene Teilmenge betrachtet, also , so erhält man einen surjektiven Garbenhomomorphismus, da auf den einzelnen wegen ein surjektiver Garbenhomomorphismus vorliegt. Der Kern ist dann nach Fakt eine lokal freie Garbe auf dem quasiaffinen Schema , es wird mit bezeichnet, man sprich von einer Syzygiengarbe oder Kerngarbe. Wenn ein lokaler Ring ist und die ein Ideal erzeugen, dass zum maximalen Ideal primär ist (d.h. die schneiden geometrisch den abgeschlossenen Punkt heraus), so ist die Syzygiengarbe eine lokal freie Garbe auf dem punktierten Spektrum .