Zum Inhalt springen

Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 45

Aus Wikiversity



Übungsaufgaben

Für dieses Aufgabenblatt darf die Beziehung zwischen totalem Differential und partiellen Ableitungen bzw. Richtungsableitungen nicht verwendet werden.


Ist die Funktion

im Punkt total differenzierbar? Was ist das totale Differential in diesem Punkt?



Berechne für die Addition

und für die Multiplikation

das totale Differential.



Es sei konstant mit für alle . Zeige, dass differenzierbar ist mit totalem Differential .



Es seien und endlichdimensionale - Vektorräume und eine offene Teilmenge. Es sei im Punkt differenzierbar mit dem Differential . Zeige, dass für alle die Beziehung

gilt.



Es sei

eine Polynomfunktion. Zeige, dass im Nullpunkt differenzierbar ist. Man gebe dabei explizit das totale Differential und die Abweichungsfunktion an.



Es sei

eine Polynomfunktion. Zeige, dass in jedem Punkt differenzierbar ist. Man gebe dabei explizit das totale Differential und die Abweichungsfunktion an.



Es seien , und endlichdimensionale - Vektorräume.

  1. Es seien und - lineare Abbildungen. Zeige, dass die Abbildung

    -linear ist.

  2. Es seien und im Punkt differenzierbare Abbildungen. Zeige, dass die Abbildung

    im Punkt P differenzierbar ist mit dem totalen Differential



Es seien endlichdimensionale - Vektorräume und eine offene Teilmenge. Weiter seien Abbildungen und . Wir nennen im Punkt tangential äquivalent, wenn der Limes

existiert und gleich ist.

  1. Zeige, dass dadurch eine Äquivalenzrelation auf der Abbildungsmenge von nach gegeben ist.
  2. Es sei total differenzierbar. Zeige, dass zu seiner linearen Approximation tangential äquivalent ist.
  3. Es seien und tangential äquivalent. Zeige, dass in diesem Fall genau dann in total differenzierbar ist, wenn dies für gilt, und dass ihre totalen Differentiale im Punkt übereinstimmen.



Es sei ein endlichdimensionaler - Vektorraum. Zeige, dass die Skalarmultiplikation

in jedem Punkt differenzierbar ist mit



Leite aus der allgemeinen Kettenregel die Kettenregel für Funktionen in einer Variablen ab.



Leite aus der allgemeinen Kettenregel die Kettenregel für differenzierbare Kurven (für eine differenzierbare Kurve und eine differenzierbare Umparametrisierung ) ab.



Es sei ein reelles Intervall und seien

zwei differenzierbare Funktionen. Beweise die Produktregel aus der allgemeinen Kettenregel unter Verwendung von Aufgabe 45.2.



Es sei ein endlichdimensionaler - Vektorraum und eine offene Teilmenge. Weiter seien zwei in differenzierbare Funktionen. Wende die Kettenregel und Aufgabe 45.2 auf das Diagramm

an, um zu zeigen, dass die Gleichung

gilt.




Aufgaben zum Abgeben

Aufgabe * (4 Punkte)

Es sei ein Intervall, ein euklidischer Vektorraum und

eine differenzierbare Kurve. Zeige, dass zwischen dem totalen Differential und der Kurven-Ableitung die Beziehung

besteht.



Aufgabe (4 Punkte)

Es seien und endlichdimensionale - Vektorräume, eine offene Menge, eine Abbildung und eine lineare Abbildung. Zeige, dass folgende Eigenschaften äquivalent sind.

  1. ist differenzierbar in mit dem totalen Differential .
  2. Der Limes

    existiert und ist gleich .

  3. Der Limes

    existiert und ist gleich .



Aufgabe (4 Punkte)

Es seien differenzierbare Funktionen in einer Variablen. Bestimme das totale Differential der Abbildung



Aufgabe (4 Punkte)

Es seien und endlichdimensionale - Vektorräume, eine offene Mengen, ein Punkt, und in differenzierbare Abbildungen. Zeige, dass dann die Produktabbildung

in differenzierbar ist mit

Tipp: Verwende Aufgabe 45.9 und die Kettenregel.


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)