Kurs:Lineare Algebra/Teil II/3/Klausur/kontrolle

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 4 4 3 1 2 5 2 6 6 3 4 4 2 2 54



Aufgabe * (3 Punkte)Referenznummer erstellen


Aufgabe * (3 Punkte)Referenznummer erstellen


Aufgabe * (4 Punkte)Referenznummer erstellen

Wende das Schmidtsche Orthonormalisierungsverfahren auf die Basis

des an.


Aufgabe * (4 Punkte)Referenznummer erstellen

Zeige, dass die Determinante einer linearen Isometrie

gleich oder gleich ist.


Aufgabe * (3 Punkte)Referenznummer erstellen

Es sei ein endlichdimensionaler - Vektorraum mit einem Skalarprodukt,

eine Isometrie und ein - invarianter Untervektorraum. Zeige, dass das orthogonale Komplement ebenfalls -invariant ist.


Aufgabe (1 Punkt)Referenznummer erstellen

Skizziere ein Dreieck, bei dem zwei Höhenfußpunkte außerhalb der Dreiecksseiten liegen.


Aufgabe * (2 Punkte)Referenznummer erstellen

Es sei ein Körper mit einer von verschiedenen Charakteristik und sei eine symmetrische Bilinearform auf einem - Vektorraum . Zeige


Aufgabe * (5 Punkte)Referenznummer erstellen

Der sei mit der Standard-Minkowski-Form versehen. Zeige, dass zu , , die Vektoren

Geschwindigkeitsvektoren eines Beobachters sind. Zeige, dass jeder Beobachtervektor diese Gestalt besitzt.


Aufgabe * (2 Punkte)Referenznummer erstellen

Zeige, dass eine zyklische Gruppe kommutativ ist.


Aufgabe (6 (3+3) Punkte)Referenznummer erstellen

Es sei ein Körper und sei

die Menge aller invertierbaren - Matrizen.

a) Zeige (ohne Bezug zur Determinante), dass mit der Matrizenmultiplikation eine Gruppe bildet.

b) Zeige (ohne Bezug zur Determinante), dass die Abbildung

ein Gruppenhomomorphismus ist.


Aufgabe * (6 (1+2+1+2) Punkte)Referenznummer erstellen

Es sei die Menge der zweimal stetig differenzierbaren Funktionen von nach . Definiere auf eine Relation durch

a) Zeige, dass dies eine Äquivalenzrelation ist.

b) Finde für jede Äquivalenzklasse dieser Äquivalenzrelation einen polynomialen Vertreter.

c) Zeige, dass diese Äquivalenzrelation mit der Addition von Funktionen verträglich ist.

d) Zeige, dass diese Äquivalenzrelation nicht mit der Multiplikation von Funktionen verträglich ist.


Aufgabe * (3 Punkte)Referenznummer erstellen

Es sei ein kommutativer Ring mit Elementen, wobei eine Primzahl sei. Zeige, dass ein Körper ist.


Aufgabe * (4 Punkte)Referenznummer erstellen

Es sei die Standardbasis des () und sei

Zeige, dass die Gruppe der eigentlichen Symmetrien von gerade Elemente besitzt.


Aufgabe * (4 Punkte)Referenznummer erstellen

Es sei ein Kreis mit sechs (äquidistanten) Knoten gegeben, die mit bezeichnet seien. Bei einem Bewegungsprozess seien die Wahrscheinlichkeiten, stehen zu bleiben oder zu dem linken oder rechten Nachbarn zu wechseln, konstant gleich . Erstelle die zugehörige stochastische Matrix und berechne die Eigenverteilung(en).


Aufgabe * (2 (1+1) Punkte)Referenznummer erstellen

  1. Es sei ein - Untervektorraum eines endlichdimensionalen - Vektorraumes . Wie kann man die Dimension des Restklassenraumes ausdrücken?
  2. Kann man mit der Formel aus (1) die Dimension des Dachproduktes ausrechnen, wobei die in der Konstruktion des Dachproduktes verwendeten Vektorräume sind?


Aufgabe * (2 Punkte)Referenznummer erstellen

Berechne in das Tensorprodukt