Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 13

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Die Pausenaufgabe

Aufgabe

Bestimme für einen Körper die idempotenten Elemente, also Elemente mit . Bestimme die linearen Projektionen .




Übungsaufgaben

Aufgabe

Es sei eine lineare Projektion auf einem endlichdimensionalen -Vektorraum . Zeige, dass bezüglich einer geeigneten Basis von durch eine Matrix der Form

beschrieben wird.


Aufgabe *

Wir betrachten die Basis

im und es sei die Projektion von auf bezüglich dieser Basis. Bestimme die Matrix zu bezüglich der Standardbasis.


Aufgabe

Es sei der Lösungsraum zur linearen Gleichung

und . Zeige

und beschreibe die Projektionen auf und auf bezüglich der Standardbasis.


Aufgabe

Zeige, dass die Summe von zwei linearen Projektionen

im Allgemeinen keine Projektion ist.


Aufgabe

Vereinfache den Beweis zu Lemma 13.5 mit Hilfe der Dimensionsformel.


Aufgabe

Bestimme die Spur zu einer linearen Projektion

auf einem endlichdimensionalen -Vektorraum .


Aufgabe

Es sei ein Körper und es seien und Vektorräume über . Zeige, dass der Homomorphismenraum

ein -Vektorraum ist.


Aufgabe

Es sei ein Körper und es seien und Vektorräume über . Zeige, dass der Homomorphismenraum

ein -Untervektorraum des Abbildungsraumes ist.


Aufgabe

Es sei ein -Vektorraum über dem Körper . Zeige, dass die Abbildung

ein Isomorphismus von Vektorräumen ist.


Aufgabe *

Es sei ein Körper und es seien und Vektorräume über . Es sei der -Vektorraum der linearen Abbildungen von nach und es sei ein fixierter Vektor. Zeige, dass die Abbildung

-linear ist.


Aufgabe *

Es sei ein Körper, und seien endlichdimensionale -Vektorräume und sei

eine lineare Abbildung.

a) Zeige: ist genau dann surjektiv, wenn es eine lineare Abbildung

mit

gibt.

b) Es sei nun surjektiv, es sei

und es sei fixiert. Definiere eine Bijektion zwischen und , unter der auf abgebildet wird.


Aufgabe

Es sei ein Körper und sei eine -Matrix über . Zeige, dass die ersten Potenzen[1]

linear abhängig in sind.


Aufgabe

Es sei ein Körper und es seien und Vektorräume über . Zeige die folgenden Aussagen.

  1. Eine lineare Abbildung

    mit einem weiteren Vektorraum induziert eine lineare Abbildung

  2. Eine lineare Abbildung

    mit einem weiteren Vektorraum induziert eine lineare Abbildung


Aufgabe

Formuliere Lemma 13.8 mit Matrizen bezüglich gegebener Basen.


Aufgabe

Es sei ein Körper und ein -Vektorraum. Zeige, dass

mit der Addition und der Hintereinanderschaltung von Abbildungen ein Ring ist.

Den Ring der vorstehenden Aufgabe nennt man Endomorphismenring zu .

Aufgabe

Es sei ein -Vektorraum und

ein Isomorphismus. Zeige, dass die Abbildung

ein Vektorraum-Isomorphismus ist und dass darüber hinaus

und

gilt.


Aufgabe

Es sei ein -Vektorraum und eine Basis von . Bestimme die Dimension des Raumes der Endomorphismen

mit

für alle . Wie sehen die Matrizen zu einem solchen bezüglich dieser Basis aus?


Aufgabe

Es sei ein -Vektorraum und es seien

Automorphismen derart, dass für jeden Untervektorraum die Gleichheit gilt. Zeige, dass mit einem ist.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Wir betrachten die Basis

im und es sei die Projektion von auf bezüglich dieser Basis. Bestimme die Matrix zu bezüglich der Standardbasis.


Aufgabe (5 (1+4) Punkte)

a) Zeige, dass die -Matrizen

Projektionen beschreiben. Dabei sind derart, dass eine Quadratwurzel existiert.

b) Bestimme sämtliche -Matrizen

die eine Projektion beschreiben.


Aufgabe (2 Punkte)

Es seien und endlichdimensionale -Vektorräume und . Zeige


Aufgabe (3 Punkte)

Es seien und jeweils verschiedene Geraden im . Welche Dimension hat der Raum




Fußnoten
  1. Wir werden später eine deutlich stärkere Aussage kennenlernen.


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)