Zum Inhalt springen

Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I/Vorlesung 28

Aus Wikiversity
„If it works, it's out of date“
David Bowie



Ein Zerlegungssatz



Es sei

ein trigonalisierbarer - Endomorphismus auf dem endlichdimensionalen - Vektorraum .

Dann gibt es eine Zerlegung

wobei diagonalisierbar und nilpotent ist, und zusätzlich

gilt.

Nach Satz 26.14 ist

wobei die die Haupträume zu den Eigenwerten seien, und es ist

mit . Es sei

die Hintereinanderschaltung , d.h. ist insbesondere eine Projektion. Wir setzen

Diese Abbildung ist offenbar diagonalisierbar, auf ist es die Multiplikation mit . Es sei

Die Nilpotenz dieser Abbildung kann man auf den einzeln überprüfen, und dort ist

also nilpotent. Ferner kommutieren und , da auf die Identität ist und auf , , die Nullabbildung. Damit kommutieren auch die direkten (skalaren) Summen davon und damit kommutieren und , also auch und .


Unter den im Satz angegebenen Bedingungen ist diese Zerlegung sogar eindeutig.


Ein Endomorphismus

auf einem - Vektorraum heißt unipotent, wenn

mit einer nilpotenten Abbildung ist.

Bei einer unipotenten Abbildung ist der diagonalisierbare Anteil im Sinne der oben beschriebenen kanonischen Zerlegung besonders einfach, es handelt sich um die Identität.



Jordansche Normalform

Es sei ein Körper und . Unter einer Jordanmatrix (zum Eigenwert ) versteht man eine quadratische Matrix der Form[1]

Wenn man eine solche Jordanmatrix als lineare Abbildung des Standardraumes in sich interpretiert, so ist

Insbesondere ist ein Eigenvektor zum Eigenwert . Eine einfache Überlegung zeigt, dass es keine dazu linear unabhängigen Eigenvektoren geben kann (siehe Aufgabe 28.22). Die Eigenschaft rechts ist äquivalent zur Bedingung[2]

für . Als Eigenvektor ist ein erzeugendes Element des Kerns der Abbildung , und die anderen Standardvektoren ergeben sich sukzessive als Urbild von unter .


Eine quadratische Matrix der Form

wobei die Jordanmatrizen sind, heißt Matrix in jordanscher Normalform.

Die dabei auftretenden Jordanmatrizen heißen Jordanblöcke der Matrix. Ihre Eigenwerte können verschieden oder gleich sein. In der Matrix

gibt es drei Jordanblöcke, nämlich

zu den Eigenwerten und nochmal .

Wir kommen zum Satz über die jordansche Normalform für trigonalisierbare Endomorphismen.


Zu jedem trigonalisierbaren Endomorphismus

auf einem endlichdimensionalen - Vektorraum

gibt es eine Basis, bezüglich der die beschreibende Matrix jordansche Normalform besitzt.

Da trigonalisierbar ist, können wir Satz 26.14 anwenden. Es gibt also eine direkte Summenzerlegung

wobei die Haupträume - invariant sind. Indem wir die Situation auf den einzelnen Haupträumen analysieren, können wir davon ausgehen, dass nur einen Eigenwert besitzt und

ist. Es ist dann

nilpotent. Daher gibt es nach Korollar 27.12 eine Basis, bezüglich der die Gestalt

besitzt, wobei die gleich oder gleich sind. Bezüglich dieser Basis hat

die Gestalt


Jede obere Dreiecksmatrix ist also ähnlich zu einer Matrix in jordanscher Normalform. Über den komplexen Zahlen kann man jede Matrix auf jordansche Normalform bringen. Wenn eine Matrix in jordanscher Normalform vorliegt, so kann man direkt den diagonalisierbaren und den nilpotenten Anteil im Sinne von Satz 28.1 ablesen: Die Diagonale liefert den diagonalisierbaren Anteil und die Einträge, die echt oberhalb der Diagonalen liegen, liefern den nilpotenten Anteil (dies ist im Allgemeinen für obere Dreiecksmatrizen nicht richtig).


Wir beschreiben, wie man zu einer linearen trigonalisierbaren Abbildung eine Basis findet, bezüglich der die beschreibende Matrix in jordanscher Normalform ist. Dazu bestimmt man zu jedem Eigenwert den minimalen Exponenten mit

Dieser Kern ist der Hauptraum zu . Man setzt

für . Dies ergibt eine Kette

Man wählt nun aus einen Vektor . Die Vektoren
bilden eine Basis für einen Jordan-Block. Wenn diese Basis schon den ganzen Hauptraum abdeckt, ist man fertig. Andernfalls sucht man in einen weiteren, zu und linear unabhängigen Vektor und nimmt wieder sämtliche sukzessiven Bilder hinzu. Wenn ausgeschöpft ist, schaut man, ob bereits abgedeckt ist, u.s.w. Wenn der Hauptraum zu ausgeschöpft ist, macht man mit dem nächsten Eigenwert weiter.

Unter gewissen Umständen kann man auch mit einer Basis des Eigenraumes anfangen. Wenn beispielsweise der Eigenraum zu eindimensional ist, so kann man einen Eigenvektor zu wählen und dazu sukzessive Urbilder unter finden, also

lösen, dann

u.s.w.

Wenn beispielsweise der Eigenraum -dimensional und der Hauptraum -dimensional, so muss man nur für einen Eigenvektor ein Urbild unter finden.


Wir betrachten die Matrix

und wollen sie auf jordansche Normalform bringen. Es ist ein Eigenvektor zum Eigenwert . Es ist

sodass es keinen weiteren linear unabhängigen Eigenvektor gibt. Wir interessieren uns für das lineare Gleichungssystem . Daraus ergibt sich sofort (aus der zweiten Zeile) und somit ( können wir frei als wählen). Also setzen wir . Schließlich brauchen wir eine Lösung für . Dies führt auf . Für die durch die Matrix beschriebene lineare Abbildung gilt somit

sodass die Abbildung bezüglich dieser Basis durch

beschrieben wird. Diese Matrix ist eine Jordanmatrix und insbesondere in jordanscher Normalform.



Wir betrachten die Matrix

und wollen sie auf jordansche Normalform bringen. Es sind und linear unabhängige Eigenvektoren zum Eigenwert . Es ist

sodass und den Eigenraum aufspannen. Ein Eigenvektor muss das Bild eines Vektors unter der Matrix sein. In der Tat besitzt das lineare Gleichungssystem

die Lösung .

Für die durch die Matrix beschriebene lineare Abbildung gilt somit

sodass die Abbildung bezüglich dieser Basis durch

beschrieben wird. Diese Matrix ist in jordanscher Normalform mit den Jordanblöcken und .



Wir betrachten die Matrix

und wollen sie auf jordansche Normalform bringen. Hier gibt es zwei Eigenwerte und somit zwei zweidimensionale Haupträume, die getrennt behandelt werden können. Es ist

somit gehört zum Kern. Die Determinante der Untermatrix rechts oben ist nicht , daher ist der Rang der Matrix gleich und der Kern ist eindimensional. Die zweite Potenz ist

ein neues Kernelement ist . Es ist also

Wegen

können die Vektoren und zum Aufstellen des ersten Jordanblockes verwendet werden.

Es ist

somit gehört zum Kern. Der Rang der Matrix ist wieder gleich und der Kern ist eindimensional. Die zweite Potenz ist

ein neues Kernelement ist . Es ist also

Wegen

können die Vektoren und zum Aufstellen des zweiten Jordanblockes verwendet werden. Insgesamt besitzt also bezüglich der Basis

die jordansche Normalform




Endomorphismen endlicher Ordnung

In Lemma 24.11 haben wir gesehen, dass Permutationsmatrizen über diagonalisierbar sind. Dies gilt über für alle Endomorphismen endlicher Ordnung.


Jede invertierbare Matrix , die endliche Ordnung besitzt,

ist diagonalisierbar.

Die Matrix ist trigonalisierbar und besitzt nach Satz 28.5 eine jordansche Normalform. Wir zeigen, dass die einzelnen Jordanblöcke

trivial sind. Wegen der endlichen Ordnung muss eine Einheitswurzel sein. Durch Multiplikation mit können wir davon ausgehen, dass eine Matrix der Form

(mit ) vorliegt. Wenn dies keine -Matrix ist, so gibt es zwei Vektoren , wobei ein Eigenvektor ist und auf abgebildet wird. Die -te Iteration der Matrix schickt dann auf und dies ist nicht , im Widerspruch zur endlichen Ordnung.




Fußnoten
  1. Manche Autoren verstehen unter einer Jordanmatrix eine Matrix, in der die Einsen unterhalb der Diagonalen stehen.
  2. Im Kontext der trigonalisierbaren Abbildungen und zum Auffinden der jordanschen Normalform ist es sinnvoll, mit statt mit zu arbeiten.


<< | Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)