Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I/Vorlesung 27

Aus Wikiversity
Zur Navigation springen Zur Suche springen
„Who on earth d'you think you are, A super star, Well, right you are.“
John Lennon

In der letzten Vorlesung haben wir die Haupträume zu einem Eigenwert zu einem Endomorphismus als Kern von für einen hinreichend großen Exponenten eingeführt. Dies bedeutet insbesondere, dass wenn man auf den zugehörigen Hauptraum einschränkt, dann eine gewisse Potenz davon die Nullabbildung ist. Hier untersuchen wir generell Endomorphismen mit der Eigenschaft, dass eine gewisse Potenz davon die Nullabbildung ist.



Nilpotente Abbildungen

Definition  

Es sei ein Körper und ein -Vektorraum. Eine lineare Abbildung

heißt nilpotent, wenn es eine natürliche Zahl derart gibt, dass die -te Hintereinanderschaltung

ist.


Definition  

Eine quadratische Matrix heißt nilpotent, wenn es eine natürliche Zahl derart gibt, dass das -te Matrixprodukt

ist.


Beispiel  

Es sei eine obere Dreiecksmatrix, bei der alle Diagonalelemente seien. hat also die Gestalt

Dann ist nilpotent, und zwar bewegt sich mit jedem Potenzieren die -Hauptdiagonale nach rechts oben. Wenn man nämlich beispielsweise das Produkt für die -te Zeile und die -te Spalte mit

ausrechnet, so kommt in den Teilprodukten stets eine vor und das Ergebnis ist .



Beispiel  

Ein Spezialfall zu Beispiel 27.3 ist die Matrix

Eine wichtige Beobachtung dabei ist, dass unter dieser Abbildung auf abgebildet wird, auf und schließlich auf , welches auf abgebildet wird. Die -te Potenz der Matrix bildet auf ab und ist nicht die Nullmatrix, die -te Potenz der Matrix ist die Nullmatrix.



Beispiel  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Zu einem Eigenwert besitzt der Hauptraum die Eigenschaft, dass die Einschränkung von auf nilpotent ist.




Lemma  

Es sei ein Körper und ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist nilpotent.
  2. Für jeden Vektor gibt es ein mit
  3. Es gibt eine Basis von und ein mit

    für .

  4. Es gibt ein Erzeugendensystem von und ein mit

    für .

Beweis  

Von (1) nach (2) ist klar. Von (2) nach (3). Es sei eine Basis (oder ein endliches Erzeugendensystem) und es sei mit

gegeben. Dann erfüllt

die Eigenschaft für jeden Erzeuger. Von (3) nach (4) ist klar. Von (4) nach (1). Zu ist

Aufgrund der Linearität von ist

also ist




Lemma  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist nilpotent
  2. Das Minimalpolynom zu ist eine Potenz von .
  3. Das charakteristische Polynom zu ist eine Potenz von .

Beweis  

Die Äquivalenz von (1) und (2) ergibt sich unmittelbar aus den Definitionen, die Äquivalenz von (2) und (3) ergibt sich aus Satz 25.10.




Korollar  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine nilpotente lineare Abbildung.

Dann ist trigonalisierbar,

und zwar gibt es eine Basis, bezüglich der durch eine obere Dreiecksmatrix beschrieben wird, in der alle Diagonaleinträge sind.

Beweis  

Dies folgt direkt aus Lemma 27.7 und Satz 25.10.




Die Jordanzerlegung zu einem nilpotenten Endomorphismen

Für einen nilpotenten Endomorphismus auf ist

es gibt also nur einen Hauptraum, und dieser ist der Gesamtraum. Wir werden jetzt zeigen, dass man eine beschreibende Matrix weiter (über die Dreiecksgestalt hinaus) verbessern kann. In der nächsten Vorlesung werden wir diese Verbesserung bei einem trigonalisierbaren Endomorphismus auf den einzelnen Haupträumen durchführen und so zur sogenannten Jordanschen Normalform gelangen.


Beispiel  

Eine Matrix der Form

mit

hat bezüglich der Basis und die Gestalt




Lemma  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine nilpotente lineare Abbildung. Es sei

und minimal mit dieser Eigenschaft.

Dann besteht zwischen den Untervektorräumen

die Beziehung

und die Inklusionen

sind echt für

Beweis  

Sei . Dann ist äquivalent zu , was die erste Behauptung bedeutet. Für die zweite Behauptung sei

für ein angenommen. Durch Anwendung von ergibt sich

In dieser Weise erhält man

im Widerspruch zur Minimalität von .




Lemma  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine nilpotente lineare Abbildung.

Dann gibt es eine Basis von mit

oder

Beweis  

Es sei

und minimal mit dieser Eigenschaft. Wir betrachten die Untervektorräume

Es sei ein direktes Komplement zu , also

Wegen Lemma 27.10 ist

und somit

Daher gibt es einen Untervektorraum von mit

und mit

In dieser Weise erhält man Untervektorräume mit

und mit

Ferner ist

da ja jeweils die vorhergehende direkte Summenzerlegung zunehmend verfeinert wird. Des weiteren ist eingeschränkt[1] auf mit injektiv. Zu ist ja wegen der Direktheit

Wir konstruieren nun eine Basis wie gewünscht. Dazu wählen wir zuerst eine Basis von . Das (linear unabhängige) Bild ergänzen wir zu einer Basis von und so weiter. Die Vereinigung dieser Basen ist dann eine Basis von . Die Basiselemente aus für werden nach Konstruktion auf andere Basiselemente abgebildet und die Basiselemente aus auf . Um eine Reihenfolge festzulegen, wählen wir ein Basiselement aus , gefolgt von all seinen Bildern, sodann ein weiteres Basiselement aus , gefolgt von all seinen Bildern, bis aufgebraucht ist. Dann arbeitet man in der gleichen Weise ab. In einem letzten Schritt vertauscht man die Reihenfolge der soeben konstruierten Basiselemente.




Korollar  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine nilpotente lineare Abbildung.

Dann gibt es eine Basis von , bezüglich der die beschreibende Matrix die Gestalt

besitzt, wobei die gleich oder gleich sind.

D.h., dass auf jordansche Normalform gebracht werden kann.

Beweis  

Dies folgt direkt aus Lemma 27.11.


Bei einer nilpotenten Abbildung auf einem zweidimensionalen Vektorraum handelt es sich um die Nullabbildung oder um eine nilpotente Abbildung mit einem eindimensionalen Kern. Im letzteren Fall erhält man für jedes Element eine Basis (in dieser Reihenfolge), bezüglich der die beschreibende Matrix die Gestalt besitzt. Bei zunehmender Dimension werden die Möglichkeiten zunehmend zahlreicher und komplexer, wir besprechen abschließend typische Beispiele in der Dimension drei.


Beispiel  

Wir wollen Lemma 27.11 auf

anwenden. Es ist

und

Somit ist

Es ist

so dass wir

wählen können. Es ist

Somit ist

mit

Schließlich ist

Daher ist

eine Basis wie gewünscht.

Die inverse Matrix zu

ist

und es ist



Beispiel  

Wir wollen Lemma 27.11 auf

anwenden. Es ist

Somit ist

Es ist

so dass wir

wählen können. Es ist

Somit ist

Daher ist

eine Basis wie gewünscht. In dieser Basis wird die lineare Abbildung durch die Matrix

beschrieben.



Beispiel  

Wir wollen Lemma 27.11 auf

anwenden. Es ist

Somit ist

Es ist

so dass wir

wählen können. Es ist

Somit ist

Daher ist

eine Basis wie gewünscht. In dieser Basis wird die lineare Abbildung durch die Matrix

beschrieben.




Fußnoten
  1. Die Einschränkung als Abbildung nach ; die sind im Allgemeinen nicht -invariant.


<< | Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)