Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 50
- Aufwärmaufgaben
Wenn in den folgenden Aufgaben nach Extrema gefragt wird, so ist damit gemeint, dass man die Funktionen auf (isolierte) lokale und globale Extrema untersuchen soll. Zugleich soll man, im differenzierbaren Fall, die kritischen Punkte bestimmen.
Bestimme die kritischen Punkte der Funktion
und entscheide, ob in diesen kritischen Punkten ein lokales Extremum vorliegt.
Bestimme die lokalen und globalen Extrema der auf der abgeschlossenen Kreisscheibe definierten Funktion
Wir betrachten die Abbildung
(es ist also ).
a) Berechne die partiellen Ableitungen von und stelle den Gradienten zu auf.
b) Bestimme die isolierten lokalen Extrema von .
Wir betrachten die Funktion
Für welches besitzt die zugehörige zweistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?
Wir betrachten die Funktion
Für welche , , besitzt die zugehörige dreistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?
Es sei ein Körper, ein endlichdimensionaler - Vektorraum und eine Bilinearform auf . Zeige, dass genau dann symmetrisch ist, wenn es eine Basis von mit
für alle gibt.
Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform auf . Es sei eine Orthogonalbasis auf mit der Eigenschaft für alle . Zeige, dass positiv definit ist.
Es sei ein endlichdimensionaler reeller Vektorraum und eine symmetrische Bilinearform auf . Zeige, dass die Gramsche Matrix zu dieser Bilinearform bezüglich einer geeigneten Basis eine Diagonalmatrix ist, deren Diagonaleinträge oder sind.
Man gebe ein Beispiel einer symmetrischen Bilinearform, das zeigt, dass der Unterraum maximaler Dimension, auf dem die Einschränkung der Form positiv definit ist, nicht eindeutig bestimmt ist.
Es sei ein endlichdimensionaler reeller Vektorraum, eine offene Menge und
eine zweimal stetig differenzierbare Funktion. Zeige, dass die Hesse-Form von in jedem Punkt symmetrisch ist.
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)
Bestimme die Gramsche Matrix des Standardskalarproduktes im bezüglich der Basis und .
Aufgabe (3 Punkte)
Man gebe ein Beispiel für einen endlichdimensionalen reellen Vektorraum mit einer symmetrischen Bilinearform auf und einer Basis von derart, dass für alle ist, aber nicht positiv definit ist.
Aufgabe (5 Punkte)
Sei
eine Funktion und betrachte
Zeige, dass allenfalls im Nullpunkt ein isoliertes lokales Extremum besitzen kann, und dass dies genau dann der Fall ist, wenn in ein isoliertes lokales Extremum besitzt.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|