Zum Inhalt springen

Kurs:Analysis/Teil I/26/Klausur mit Lösungen/kontrolle

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 7 6 1 3 5 7 3 2 6 6 2 5 3 2 64




Aufgabe (3 Punkte)


Lösung

  1. Es sei eine Menge mit einer Verknüpfung

    gegeben. Dann heißt ein Element neutrales Element der Verknüpfung, wenn für alle die Gleichheit

    gilt.

  2. Ein Element mit für alle heißt obere Schranke für .
  3. Ein Element heißt Grenzwert von in , wenn es zu jedem ein derart gibt, dass für jedes aus

    die Abschätzung

    folgt.

  4. Man sagt, dass die Funktionenfolge gleichmäßig konvergiert, wenn es eine Funktion

    derart gibt, dass es zu jedem ein mit

    gibt.

  5. Zu , , heißt die Zahl

    der Differenzenquotient von zu und .

  6. Eine Differentialgleichung der Form

    mit einer Funktion ( reelles Intervall)

    heißt homogene lineare Differentialgleichung.


Aufgabe (3 Punkte)


Lösung

  1. Es sei ein Körper und es seien verschiedene Elemente und Elemente gegeben. Dann gibt es ein Polynom vom Grad derart, dass für alle ist.
  2. Es seien

    zwei absolut konvergente Reihen komplexer Zahlen. Dann ist auch das Cauchy-Produkt absolut konvergent und für die Summe gilt

  3. Die Funktionen seien in differenzierbar mit . Dann ist differenzierbar in mit


Aufgabe (7 (1+1+2+3) Punkte)

Der Planet Trigeno wird von einer einzigen Tierart bevölkert, den Trigos. Diese Tierart besitzt drei Geschlechter: Antilopen (A), Büffel (B) und Cnus (C). Bei der Paarung treffen zwei Individuen zusammen und erzeugen ein neues Individuum. Wenn das Paar gleichgeschlechtlich ist, so ist das Ergebnis wieder dieses Geschlecht, wenn das Paar gemischtgeschlechtlich ist, so ist das Ergebnis das dritte unbeteiligte Geschlecht. Alle Tiere gehören einer eindeutigen Generation an.

  1. Die -te Generation bestehe nur aus einem einzigen Geschlecht. Zeige, dass jede weitere Generation auch nur aus diesem Geschlecht besteht.
  2. Die -te Generation bestehe nur aus zwei Individuen unterschiedlichen Geschlechts. Zeige, dass diese Geschlechter mit ihrer Generation aussterben.
  3. Es gelte nun die zusätzliche Bedingung, dass jedes Paar nur einen Nachkommen erzeugen darf. Zeige, dass die Tierart genau dann aussterben muss, wenn es in einer Generation nur zwei oder weniger Individuen gibt.
  4. Es gelte nun die zusätzliche Bedingung, dass jedes Paar nur einen Nachkommen erzeugen darf, und in jeder Generation gebe es genau drei Individuen. Beschreibe die möglichen Generationsabfolgen. Welche Periodenlängen treten auf?


Lösung

  1. Wenn die Generation nur aus dem Geschlecht besteht, so sind nur Paarungen innerhalb dieses Geschlechts möglich und das Ergebnis gehört stets diesem Geschlecht an. Mit Induktion folgt, dass dies über alle folgenden Generationen so bleibt.
  2. Die Generation bestehe aus einem Individuum des Geschlechts und aus einem Individuum des Geschlechts . Die Folgegeneration besteht dann ausschließlich aus dem dritten Geschlecht und nach Teil (1) überträgt sich das auf alle folgenden Generationen.
  3. Wenn es nur ein oder kein Individuum gibt, so ist keine Paarung möglich und die nächste Generation ist leer. Wenn es zwei Individuen gibt, so ist nur eine Paarung möglich und es gibt nur einen Nachkommen, der sich allein nicht fortpflanzen kann. Wenn es dagegen mindestens drei Individuen, egal welchen Geschlechts, gibt, so sind auch mindestens drei Paarungen möglich und die nächste Generation besitzt mindestens wieder drei Individuen.
  4. Wenn drei gleichgeschlechtliche Individuen in einer Generation leben, so erzeugen die drei möglichen Paare stets wieder ebendieses Geschlecht. Die Möglichkeiten sind oder oder und die Periodenlänge ist . Wenn drei unterschiedliche Geschlechter vertreten sind, so ist jedes Geschlecht durch genau ein Individuum vertreten, es liegt also vor. Die drei Paarungen führen dann wieder zu und die Periodenlänge ist ebenfalls . Wenn ein Geschlecht durch zwei Individuen vertreten ist und ein zweites Geschlecht durch ein Individuum, sagen wir , so wird daraus und daraus und daraus . Die Periodenlänge ist also . Von diesem Typ gibt es zwei Generationsabfolgen, nämlich die mit (mit und ) und die mit (mit und ).


Aufgabe (6 (3+3) Punkte)

Es sei ein angeordneter Körper und es sei

eine bijektive Abbildung mit der Umkehrfunktion . Zeige die folgenden Aussagen.

  1. ist genau dann streng wachsend, wenn streng wachsend ist.
  2. ist genau dann streng fallend, wenn streng fallend ist.


Lösung

Wegen der Symmetrie der Situation muss man für beide Aussagen nur die Hinrichtung zeigen.

  1. Es sei streng wachsend und aus . Dann gibt es eindeutig bestimmte Elemente mit und . Für diese gilt

    da sich andernfalls direkt ein Widerspruch zum strengen Wachstum von ergibt. Somit ist

    und ist ebenfalls streng wachsend.

  2. Es sei streng fallend und aus . Dann gibt es eindeutig bestimmte Elemente mit und . Für diese gilt

    da sich andernfalls, aus wegen der Voraussetzung an , streng fallend zu sein, direkt der Widerspruch ergibt. Somit ist

    und ist ebenfalls streng fallend.


Aufgabe (1 Punkt)

Jemand sagt zur Folge . „Der Zähler und der Nenner gehen hier beide gegen unendlich. Doch der Nenner geht deutlich schneller gegen unendlich, deshalb konvergiert die Folge gegen “. Beurteile diese Argumentation.


Lösung Rationale Folge/Nenner schneller/Argument/Aufgabe/Lösung


Aufgabe (3 Punkte)

Führe in die Division mit Rest durch “ für die beiden Polynome und durch.


Lösung

Es ist insgesamt


Aufgabe (5 Punkte)

Beweise das Leibnizkriterium für alternierende Reihen.


Lösung

Wir setzen

Wir betrachten die Teilfolge mit geradem Index. Für jedes gilt wegen die Beziehung

d.h. diese Teilfolge ist fallend. Ebenso ist die Folge der ungeraden Teilsummen wachsend. Es gelten die Abschätzungen

Daher sind die beiden Teilfolgen fallend und nach unten beschränkt bzw. wachsend und nach oben beschränkt, und daher wegen Korollar 7.1 (Analysis (Osnabrück 2021-2023)) konvergent. Wegen und stimmen die Grenzwerte überein.


Aufgabe (7 Punkte)

Beweise das Folgenkriterium für die Stetigkeit einer Funktion in einem Punkt .


Lösung

Es bezeichne (1) die Stetigkeit von im Punkt und (2) die Eigenschaft, dass für jede gegen konvergente Folge die Bildfolge gegen konvergiert. Wir müssen die Äquivalenz von (1) und (2) zeigen.

Es sei (1) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass

ist. Dazu sei vorgegeben. Wegen (1) gibt es ein mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung

gilt. Nach der Wahl von ist dann

sodass die Bildfolge gegen konvergiert.
Es sei (2) erfüllt.  Wir nehmen an, dass nicht stetig ist. Dann gibt es ein derart, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand besitzt, der größer als ist. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenglieder zu zumindest ist. Dies ist ein Widerspruch zu (2).


Aufgabe (3 Punkte)

Wir betrachten die Funktion

Bestimme, ausgehend vom Intervall , mit der Intervallhalbierungsmethode ein Intervall der Länge , in dem eine Nullstelle von liegen muss.


Lösung

Wegen und muss nach dem Zwischenwertsatz im Intervall eine Nullstelle von liegen.

Die Intervallmitte ist , dort hat den Wert

Dies ist negativ, also muss eine Nullstelle im Intervall liegen.

Die Intervallmitte von diesem Intervall ist , dort hat den Wert

Dies ist positiv, also muss eine Nullstelle im Intervall liegen.

Die Intervallmitte von diesem Intervall ist , dort hat den Wert

Dies ist negativ, also muss eine Nullstelle im Intervall liegen. Die Länge dieses Intervalls ist .


Aufgabe (2 Punkte)

Bestimme die Schnittpunkte des Einheitskreises mit der durch

gegebenen Geraden.


Lösung

Der Einheitskreis ist durch

gegeben. Darin setzen wir

ein und erhalten

Also ist

und damit

Die Schnittpunkte sind also und .


Aufgabe (6 Punkte)

Es sei

ein Polynom vom Grad , ein Punkt und die Tangente an im Punkt . Zeige die Beziehung

mit einem Polynom vom Grad .


Lösung

Es ist

Wir schreiben

mit . Somit ist

Daher ist

Für den rechten Faktor gilt

Die einzelnen Summanden (ohne die Koeffizienten ) haben die Form

Hier kann man also nochmal einen Faktor ausklammern.


Aufgabe (6 Punkte)

Es sei eine -fach stetig differenzierbare Funktion mit der Eigenschaft, dass die -te Ableitung überall positiv ist. Zeige, dass maximal Nullstellen besitzt.


Lösung

Wir zeigen die Aussage durch Induktion über . Bei bedeutet die Voraussetzung einfach, dass selbst überall positiv ist und damit keine Nullstelle besitzen kann.

Es sei die Aussage nun für bewiesen und sei eine -fach stetig differenzierbare Funktion, deren -te Ableitung überall positiv ist. Das bedeutet für die erste Ableitung , dass deren -te Ableitung immer positiv ist. Nach Induktionsvoraussetzung besitzt daher höchstens Nullstellen. Zwischen zwei benachbarten Nullstellen ist dann nach dem Zwischenwertsatz immer positiv oder immer negativ und das gilt auch unterhalb der kleinsten und oberhalb der größten Nullstelle. Es gibt also höchstens Intervalle, auf denen im Innern positiv oder negativ ist. Dies bedeutet wieder für , dass es höchstens Intervalle gibt, auf denen streng wachsend oder streng fallend ist. Auf einem solchen Intervall kann höchstens eine Nullstelle besitzen, sodass höchstens Nullstellen besitzt.


Aufgabe (2 Punkte)

Bestimme ein mit


Lösung

Wir behaupten, dass

ein Urbild ist. Dies ergibt sich unter Verwendung der Funktionalgleichung und der eulerschen Formel durch


Aufgabe (5 Punkte)

Es sei ein reelles Intervall und sei

eine stetige Funktion. Es sei und es sei

die zugehörige Integralfunktion. Zeige, dass dann differenzierbar ist und dass für alle gilt.


Lösung

Es sei fixiert. Der Differenzenquotient ist

Wir müssen zeigen, dass für der Limes existiert und gleich ist. Nach dem Mittelwertsatz der Integralrechnung gibt es zu jedem ein mit

und damit ist

Für konvergiert gegen und wegen der Stetigkeit von konvergiert gegen .


Aufgabe (3 Punkte)

Bestimme eine Stammfunktion für die Funktion


Lösung

Wir verwenden partielle Integration, und zwar leiten wir ab und ziehen für die Stammfunktion heran. Somit ist

und daher ist

eine Stammfunktion.


Aufgabe (2 Punkte)

Löse das Anfangswertproblem


Lösung

Die Stammfunktionen zu sind

Die Bedingung

führt auf

also