Kurs:Elemente der Algebra (Osnabrück 2015)/Arbeitsblatt 15

Aus Wikiversity



Übungsaufgaben

Aufgabe

Bestätige den kleinen Fermat direkt für die Primzahlen .


Aufgabe

Bestimme die multiplikative Ordnung aller Einheiten im Restklassenkörper .


Aufgabe *

Berechne in .


Aufgabe

Finde einen Restklassenring derart, dass die Einheitengruppe davon nicht zyklisch ist.


Aufgabe

Konstruiere endliche Körper mit und Elementen.


Aufgabe *

Es sei eine Primzahl und sei ein Polynom mit Koeffizienten in vom Grad . Zeige, dass es ein Polynom mit einem Grad derart gibt, dass für alle Elemente die Gleichheit

gilt.


Aufgabe

Es sei . Finde ein Polynom vom Grad , das für alle Elemente aus mit übereinstimmt.


Aufgabe *

a) Zeige, dass durch

ein Körper mit Elementen gegeben ist.

b) Berechne in das Produkt .

c) Berechne das (multiplikativ) Inverse zu .


Aufgabe

Zeige, dass ein Körper ist und bestimme das Inverse von , wobei die Restklasse von bezeichne.


Aufgabe

Man gebe einen Restklassenring an, in dem es nichttriviale idempotente Elemente gibt.


Aufgabe

Finde in nichttriviale idempotente Elemente.


Aufgabe

Es sei ein kommutativer Ring und sei . Es sei sowohl nilpotent als auch idempotent. Zeige, dass ist.


Aufgabe

Es seien und kommutative Ringe und sei der Produktring . Zeige, dass die Teilmenge ein Hauptideal ist.


Aufgabe

Sei ein faktorieller Bereich und ein Primelement. Zeige, dass der Restklassenring nur die beiden trivialen idempotenten Elemente und besitzt.


Aufgabe

Es seien ein kommutativer Ring und Ideale in . Es sei weiter

Zeige, dass genau dann surjektiv ist, wenn gilt. Wie sieht aus? Benutze jetzt den Homomorphiesatz um einzusehen, was das im Falle mit dem chinesischen Restsatz zu tun hat.


Aufgabe

Es sei ein kommutativer Ring und seien Ideale. Wir betrachten die Gruppenhomomorphismen

und

Zeige, dass injektiv ist, dass surjektiv ist und dass

ist. Sind und Ringhomomorphismen?


Aufgabe

Es sei ein Körper und sei der Polynomring über . Es seien verschiedene Elemente und

das Produkt der zugehörigen linearen Polynome. Zeige, dass der Restklassenring isomorph zum Produktring ist.


Aufgabe *

Das Polynom besitzt in die Zerlegung

in irreduzible Faktoren und daher gilt die Isomorphie

a) Bestimme das Polynom kleinsten Grades, das rechts dem Element entspricht.

a) Bestimme das Polynom kleinsten Grades, das rechts dem Element entspricht.


Aufgabe *

Schreibe den Restklassenring als ein Produkt von Körpern, wobei lediglich die Körper und vorkommen. Schreibe die Restklasse von als ein Tupel in dieser Produktzerlegung.


Aufgabe

Zeige, dass jeder echte Restklassenring von isomorph zu einem Produktring der Form

ist.


Aufgabe

Realisiere den Produktring

als einen Restklassenring von .


Aufgabe *

Es seien kommutative Ringe und sei

der Produktring.

  1. Es seien

    Ideale. Zeige, dass die Produktmenge

    ein Ideal in ist.

  2. Zeige, dass jedes Ideal die Form

    mit Idealen besitzt.

  3. Sei

    ein Ideal in . Zeige, dass genau dann ein Hauptideal ist, wenn sämtliche Hauptideale sind.

  4. Zeige, dass genau dann ein Hauptidealring ist, wenn alle Hauptidealringe sind.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Bestimme die multiplikative Ordnung aller Einheiten im Restklassenkörper .


Aufgabe (3 Punkte)

Es sei eine Primzahl. Beweise durch Induktion den kleinen Fermat, also die Aussage, dass ein Vielfaches von für jede ganze Zahl ist.


Aufgabe (4 Punkte)

Zeige, dass ein Körper ist und bestimme das Inverse von , wobei die Restklasse von bezeichne.


Aufgabe (4 Punkte)

Es sei ein kommutativer Ring und sei ein idempotentes Element. Zeige, dass auch idempotent ist und dass die „zusammengesetzte“ Restklassenabbildung

eine Bijektion ist.


Der folgende Satz heißt Satz von Wilson.

Es sei eine Primzahl.

Dann ist .


Aufgabe (4 Punkte)

Bestimme die Zerlegung von in irreduzible Polynome im Polynomring . Beweise aus dieser Zerlegung den Satz von Wilson.



<< | Kurs:Elemente der Algebra (Osnabrück 2015) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)