Kurs:Körper- und Galoistheorie (Osnabrück 2011)/Vorlesung 19

Aus Wikiversity
Zur Navigation springen Zur Suche springen

In dieser Vorlesung möchten wir zunächst nachweisen, dass es sich bei einem Kreisteilungskörper über um eine Galoiserweiterung handelt, deren Galoisgruppe abelsch ist und eine Struktur besitzt, die unmittelbar mit den Einheitswurzeln zusammenhängt.



Kreisteilungskörper als Galoiserweiterung

Wir kommen nun zur Galoiseigenschaft der Kreisteilungskörper über .



Satz  

Es sei der -te Kreisteilungskörper.

Dann ist eine Galoiserweiterung mit der Galoisgruppe

Dabei entspricht der Einheit derjenige Automorphismus , der eine -te Einheitswurzel auf abbildet.

Beweis  

Nach Korollar 18.10 ist

wobei das -te Kreisteilungspolynom ist. Dieses ist das Produkt über alle primitiven Einheitswurzeln und damit vom Grad . Da der Kreisteilungskörper all diese primitiven Einheitswurzeln enthält, zerfällt das Kreisteilungspolynom über in Linearfaktoren und daher ist der Zerfällungskörper des Kreisteilungspolynoms und somit nach Satz 15.6 eine Galoiserweiterung.

Es sei nun eine primitive -te Einheitswurzel, und zwar diejenige, die bei der obigen Restklassenidentifizierung der Variablen entspricht. Zu ist ebenfalls eine primitive Einheitswurzel. Wir betrachten den Einsetzungshomomorphismus

Dieser ist surjektiv, da den Kreisteilungskörper erzeugt. Wegen induziert dies einen Automorphismus

Dadurch erhalten wir eine Zuordnung

Für ist

so dass gilt (da die Automorphismen auf dem Erzeuger festgelegt sind). Die Zuordnung ist also ein Gruppenhomomorphismus. Für verschiedene Einheiten ist und somit . Die Abbildung ist also injektiv. Da es links und rechts Elemente gibt, ist die Abbildung eine Bijektion.



Beispiel  

Wir betrachten den achten Kreisteilungskörper . Die Einheitengruppe ist , wobei die Ordnung besitzen. Die nach Satz 19.1 zugehörigen Körperautomorphismen sind neben der Identität die Abbildungen , die auf den Einheitswurzeln ( sei eine primitive achte Einheitswurzel) folgendermaßen wirken.

und




Korollar  

Zu jeder endlichen abelschen Gruppe gibt es eine endliche Galoiserweiterung , deren Galoisgruppe gleich ist.

Beweis  

Nach einem elementaren Satz, den wir hier nicht beweisen, lässt sich als Restklassengruppe einer Einheitengruppe auffassen. Es sei

der zugehörige surjektive Restklassenhomomorphismus und der Kern davon. Nach Satz 19.1 ist die Galoisgruppe der -ten Kreisteilungserweiterung . Es sei der Fixkörper zu . Nach Satz 16.4 ist eine Galoiserweiterung mit Galoisgruppe .


Es ist ein offenes Problem, ob jede endliche Gruppe als Galoisgruppe einer Galoiserweiterung von auftritt. Diese Fragestellung gehört zur sogenannten inversen Galoistheorie.



Galoiseigenschaften des Kompositums

Wir betrachten eine wichtige Konstruktion, das sogenannte Kompositum.


Definition  

Es sei eine Körpererweiterung und seien zwei Zwischenkörper. Dann nennt man den von und erzeugten Unterkörper das Kompositum der beiden Körper (in ). Es wird mit bezeichnet.



Lemma  

Es sei eine endliche separable Körpererweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine endliche separable Körpererweiterung.

Beweis  

Es sei separabel, und seien die zu gehörigen (separablen) Minimalpolynome. Dann ist und die Minimalpolynome der über sind in Teiler der und daher selbst separabel. Nach Satz 12.7 ist eine separable Körpererweiterung.




Lemma  

Es sei eine endliche normale Körpererweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine normale Körpererweiterung.

Beweis  

Wir können schreiben, und wir wissen, dass es zugehörige Polynome mit gibt, die über zerfallen. Daher ist und dieselben Polynome, aufgefasst in , erfüllen die gleichen Eigenschaften. Aus Satz 14.3  (3) ergibt sich die Normalität.


Aus diesen zwei Lemmata ergibt sich der folgende Satz, der für die Charakterisierung der auflösbaren Körpererweiterungen wichtig ist.



Satz  

Es sei eine endliche Galoiserweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine endliche Galoiserweiterung, und für ihre Galoisgruppe gilt die natürliche Isomorphie

Beweis  

Die Erweiterung ist normal nach Lemma 19.6 und separabel nach Lemma 19.5, also eine Galoiserweiterung aufgrund von Satz 15.6.
Zur Berechnung der Galoisgruppe gehen wir von der Einschränkungsabbildung

aus, die wegen der Normalität von nach Satz 14.3  (4) ein wohldefinierter Gruppenhomomorphismus ist. Es sei ein Automorphismus, dessen Bild unter diesem Homomorphismus trivial sei, also . Da auch gilt, ist auf dem Kompositum die Identität, also das neutrale Element. Daher ist nach dem Kernkriterium injektiv.
Das Bild von ist eine Untergruppe . Aufgrund der Galoiskorrespondenz gibt es einen Zwischenkörper , , mit , und zwar ist der Fixkörper von . Es liegt also insgesamt die Situation

vor. Wir behaupten . Für jedes ist , und daher ist auch . Also ist . Wenn ist, so bedeutet dies, dass für jedes die Gleichheit gilt. Dann ist aber nach Satz 15.6, da eine Galoiserweiterung ist. Somit ist . Insgesamt ist also




<< | Kurs:Körper- und Galoistheorie (Osnabrück 2011) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)