Kurs:Zahlentheorie (Osnabrück 2016-2017)/Vorlesung 22
In dieser und der nächsten Vorlesung beweisen wir zwei Versionen zur eindeutigen Primfaktorzerlegung in Zahlbereichen, die beide Abschwächungen zur eindeutigen Primfaktorzerlegung in sind. Die eine besagt, dass für einen Zahlbereich die eindeutige Primfaktorzerlegung von Elementen „lokal“ gilt (Satz 22.17 und Bemerkung 22.19). Die zweite Version besagt, dass man auf der Ebene der Ideale eine eindeutige Faktorzerlegung in Primideale erhält (Satz 23.14). Für die erste Version benötigen wir die Begriffe Nenneraufnahme, Lokalisierung und diskreter Bewertungsring.
- Nenneraufnahme
Es sei ein kommutativer Ring. Eine Teilmenge heißt multiplikatives System, wenn die beiden Eigenschaften
- ,
- Wenn , dann ist auch ,
gelten.
Es handelt sich also einfach um ein Untermonoid des multiplikativen Monoids eines Ringes.
Es sei ein kommutativer Ring und ein Element. Dann bilden die Potenzen , , ein multiplikatives System.
Es sei ein Integritätsbereich. Dann bilden alle von verschiedenen Elemente in ein multiplikatives System, das mit bezeichnet wird.
Es sei ein kommutativer Ring und ein Primideal. Dann ist das Komplement ein multiplikatives System. Dies folgt unmittelbar aus der Definition.
Es sei ein Integritätsbereich und sei ein multiplikatives System, . Dann nennt man den Unterring
die Nenneraufnahme zu .
Für die Nenneraufnahme an einem Element schreibt man einfach statt . Man kann eine Nenneraufnahme auch dann definieren, wenn kein Integritätsbereich ist, siehe Aufgabe 22.9.
Es sei ein Integritätsbereich und sei ein Primideal. Dann nennt man die Nenneraufnahme an die Lokalisierung von an . Man schreibt dafür . Es ist also
Für eine Primzahl besteht aus allen rationalen Zahlen, die man ohne im Nenner schreiben kann.
Ein kommutativer Ring heißt lokal, wenn genau ein maximales Ideal besitzt.
Der folgende Satz zeigt, dass diese Namensgebung Sinn ergibt.
Es sei ein Integritätsbereich und sei ein Primideal in . Dann ist die Lokalisierung ein lokaler Ring mit maximalem Ideal
Die angegebene Menge ist in der Tat ein Ideal in der Lokalisierung
Wir zeigen, dass das Komplement von nur aus Einheiten besteht, sodass es sich um ein maximales Ideal handeln muss. Es sei also , aber nicht in . Dann sind und somit gehört der inverse Bruch ebenfalls zur Lokalisierung.
Das Ideal ist dabei das
Erweiterungsideal
zu unter dem Ringhomomorphismus
.
Es sei ein Integritätsbereich mit Quotientenkörper .
Dann gilt
wobei der Durchschnitt über alle maximale Ideale läuft und in genommen wird.
Die Inklusion ist klar. Es sei also und sei angenommen, gehöre zum Durchschnitt rechts. Für jedes maximale Ideal ist also , d.h. es gibt und mit . Wir betrachten das Ideal
Dieses Ideal ist in keinem maximalen Ideal enthalten, also muss es nach dem Lemma von Zorn das Einheitsideal sein. Es gibt also endlich viele maximale Ideale , und mit
wobei gesetzt wurde. Damit ist
Wir schreiben
Also gehört zu .
Es sei ein normaler Integritätsbereich und sei ein multiplikatives System.
Dann ist auch die Nenneraufnahme normal.
Beweis
- Diskrete Bewertungsringe
Ein diskreter Bewertungsring ist ein Hauptidealbereich mit der Eigenschaft, dass es bis auf Assoziiertheit genau ein Primelement in gibt.
Wir wollen zeigen, dass zu einem Zahlbereich die Lokalisierung an einem jeden Primideal ein diskreter Bewertungsring ist.
Ein diskreter Bewertungsring ist
ein lokaler, noetherscher Hauptidealbereich mit genau zwei Primidealen, nämlich und dem maximalen Ideal .
Ein diskreter Bewertungsring ist kein Körper. In einem Hauptidealbereich, der kein Körper ist, wird jedes maximale Ideal von einen Primelement erzeugt, und die Primerzeuger zu verschiedenen maximalen Idealen können nicht assoziiert sein. Also gibt es genau ein maximales Ideal. Nach Satz 19.1 ist ein Hauptidealbereich insbesondere ein Dedekindbereich, sodass es als weiteres Primideal nur noch das Nullideal gibt.
Zu einem Element , in einem diskreten Bewertungsring mit Primelement heißt die Zahl mit der Eigenschaft , wobei eine Einheit bezeichnet, die Ordnung von . Sie wird mit bezeichnet.
Die Ordnung ist also nichts anderes als der Exponent zum (bis auf Assoziiertheit) einzigen Primelement in der Primfaktorzerlegung. Sie hat folgende Eigenschaften.
Es sei ein diskreter Bewertungsring mit maximalem Ideal .
Dann hat die Ordnung
folgende Eigenschaften.
- .
- .
- Es ist genau dann, wenn ist.
- Es ist genau dann, wenn ist.
Beweis
Wir wollen eine wichtige Charakterisierung für diskrete Bewertungsringe beweisen, die insbesondere beinhaltet, dass ein normaler lokaler Integritätsbereich mit genau zwei Primidealen bereits ein diskreter Bewertungsring ist. Dazu benötigen wir einige Vorbereitungen.
Es sei ein kommutativer Ring und sei nicht nilpotent.
Dann gibt es ein Primideal in mit .
Wir betrachten die Menge der Ideale
Diese Menge ist nicht leer, da sie das Nullideal enthält. Ferner ist sie induktiv geordnet (bezüglich der Inklusion). Ist nämlich , , eine total geordnete Teilmenge von , so ist deren Vereinigung ebenfalls ein Ideal, das keine Potenz von enthält. Nach dem Lemma von Zorn gibt es daher maximale Elemente in .
Wir behaupten, dass ein solches maximales Element ein Primideal ist. Es sei dazu und , und sei angenommen. Dann hat man echte Inklusionen
Wegen der Maximalität können die beiden Ideale rechts nicht zu gehören, und das bedeutet, dass es Exponenten gibt mit
Dann ergibt sich der Widerspruch
Es sei ein noetherscher lokaler kommutativer Ring. Es sei vorausgesetzt, dass das maximale Ideal das einzige Primideal von ist.
Dann gibt es einen Exponenten mit
Wir behaupten zunächst, dass jedes Element in eine Einheit oder nilpotent ist. Es sei hierzu keine Einheit. Dann ist . Angenommen, ist nicht nilpotent. Dann gibt es nach Lemma 22.15 ein Primideal in mit . Damit ergibt sich der Widerspruch .
Es ist also jedes Element im maximalen Ideal nilpotent. Insbesondere gibt es für ein endliches Erzeugendensystem von eine natürliche Zahl mit für alle . Sei . Dann ist ein beliebiges Element aus von der Gestalt
Ausmultiplizieren ergibt eine Linearkombination mit Monomen und , sodass ein mit einem Exponenten vorkommt. Daher ist das Produkt .
Es sei ein noetherscher lokaler Integritätsbereich mit der Eigenschaft, dass es genau zwei Primideale gibt. Dann sind folgende Aussagen äquivalent.
- ist ein diskreter Bewertungsring.
- ist ein Hauptidealbereich.
- ist faktoriell.
- ist normal.
- ist ein Hauptideal.
folgt direkt aus der Definition 22.11.
folgt aus Satz 3.7.
folgt aus Satz 17.12.
. Es sei , . Dann ist ein noetherscher lokaler Ring mit nur einem Primideal (nämlich ). Daher gibt es nach Lemma 22.16 ein mit . Zurückübersetzt nach heißt das, dass gilt. Wir wählen minimal mit den Eigenschaften
Wähle mit und betrachte
(es ist ). Das Inverse, also , gehört nicht zu , sonst wäre . Da nach Voraussetzung normal ist, ist auch nicht ganz über . Nach dem Modulkriterium Lemma 17.7 für die Ganzheit gilt insbesondere für das maximale Ideal die Beziehung
ist. Nach Wahl von ist aber auch
Daher ist ein Ideal in , das nicht im maximalen Ideal enthalten ist. Also ist . Das heißt einerseits und andererseits gilt für ein beliebiges die Beziehung , also , also und somit .
. Sei . Dann ist ein Primelement und zwar bis auf Assoziiertheit das einzige. Es sei , keine Einheit. Dann ist und daher . Dann ist eine Einheit oder . Im zweiten Fall ist wieder und .
Wir behaupten, dass man mit einem und einer Einheit schreiben kann. Andernfalls könnte man mit beliebig großem schreiben. Nach Lemma 22.16 gibt es ein mit . Bei ergibt sich und der Widerspruch .
Es lässt sich also jede Nichteinheit als Produkt einer Potenz des Primelements mit einer Einheit schreiben. Insbesondere ist faktoriell. Für ein beliebiges Ideal ist mit Einheiten . Dann sieht man leicht, dass ist mit .
Die Lokalisierung ist lokal nach Aufgabe 22.15, sodass es lediglich die beiden Primideale und gibt. Ferner ist noethersch. Da normal ist, ist nach Satz 22.10 auch die Lokalisierung normal. Wegen Satz 22.17 ist ein diskreter Bewertungsring.
Korollar 22.18 besagt in Verbindung mit Satz 22.17, dass wenn man bei einem Dedekindbereich und spezieller einem Zahlbereich zur Lokalisierung an einem maximalen Ideal übergeht, dass dort die eindeutige Primfaktorzerlegung gilt.
Es sei ein Dedekindbereich.
Dann ist der Durchschnitt von diskreten Bewertungsringen.
Nach Satz 22.9 ist
wobei durch alle maximalen Ideale von läuft. Nach Korollar 22.18 sind die beteiligten Lokalisierungen allesamt diskrete Bewertungsringe.
<< | Kurs:Zahlentheorie (Osnabrück 2016-2017) | >> |
---|