Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Vorlesung 54

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Zur Eindeutigkeit der Lösungen von Differentialgleichungen



Satz  

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein stetiges Vektorfeld auf , das lokal einer Lipschitz-Bedingung genügt. Es sei ein offenes Teilintervall und es seien

Lösungen des Anfangswertproblems

Dann ist .

Beweis  

Wir betrachten die Menge

Wegen ist diese Menge nicht leer. Zu jedem Punkt gibt es nach Satz 53.4 eine offene Intervallumgebung , worauf es zu gegebener Anfangsbedingung genau eine Lösung der Differentialgleichung gibt. Wenn ist, so ist und daher stimmen und in einer offenen Umgebung mit der eindeutigen Lösung und damit untereinander überein. Also ist . Dies bedeutet, dass eine offene Teilmenge von ist.
Andererseits sind und stetig und daher ist nach Aufgabe ***** die Menge auch abgeschlossen in .
Da ein Intervall nach Satz 21.2 zusammenhängend ist, folgt .


Das folgende Beispiel zeigt, dass ohne die Lipschitz-Bedingung die Lösung eines Anfangswertproblems nicht eindeutig bestimmt ist.


Beispiel  

Wir betrachten das Anfangswertproblem

zum zeitunabhängigen Vektorfeld

Offensichtlich gibt es die stationäre Lösung

aber auch

ist eine Lösung, wie man durch Nachrechnen sofort bestätigt. Aus diesen beiden Lösungen kann man sich noch weitere Lösungen basteln. Seien dazu reelle Zahlen. Dann ist auch

eine Lösung. D.h. es gibt Lösungen, bei denen das Teilchen beliebig lange (im Zeitintervall von nach ) ruht und danach (und davor) sich bewegt. Sobald sich das Teilchen in einem Punkt befindet, ist der Bewegungsablauf lokal eindeutig bestimmt.


Bemerkung  

Zu einem stetigen Vektorfeld

kann man sich fragen, ob es ein maximales Definitionsintervall für die Lösung eines Anfangswertproblems

gibt. Dies ist in der Tat der Fall, wenn das Vektorfeld lokal einer Lipschitz-Bedingung genügt! Man kann nämlich alle Teilmengen

betrachten. Wegen Satz 54.1 stimmen zwei Lösungen und auf dem Durchschnitt überein, und liefern daher eine eindeutige Lösung auf der Vereinigung . Daher enthält die Menge der Teilintervalle, auf denen eine Lösung definiert ist, ein maximales Teilintervall .

Dieses Teilintervall kann kleiner als sein. Die Grenzen des maximalen Teilintervalls, auf dem eine Lösung definiert ist, heißen auch Entweichzeiten.




Gradientenfelder
Gradient field.png

Definition  

Sei ein euklidischer Vektorraum, offen und

eine differenzierbare Funktion. Dann nennt man die Abbildung

das zugehörige Gradientenfeld.

Ein Gradientenfeld ist also ein zeitunabhängiges Vektorfeld. Man spricht auch von einem Potentialfeld, die Funktion (manchmal ) heißt dann ein Potential des Vektorfeldes. Wenn zweimal stetig differenzierbar ist, so genügt nach Lemma 52.10 das zugehörige Gradientenfeld lokal einer Lipschitz-Bedingung.

Die folgende Aussage zeigt, dass die Lösungskurven der zugehörigen Differentialgleichung senkrecht auf den Fasern von liegen. Die Fasern beschreiben, wo das Potential (oder die Höhenfunktion) konstant ist, die Lösungen beschreiben den Weg des steilsten Anstiegs. Wenn beispielsweise die Höhenfunktion eines Gebirges ist, so gibt das Gradientenfeld in jedem Punkt den steilsten Anstieg an und die Trajektorie einer Lösungskurve beschreibt den Verlauf eines Baches (wir behaupten nicht, dass die Bewegung eines Wassermoleküls im Bach durch diese Differentialgleichung bestimmt ist, sondern lediglich, dass der zurückgelegte Weg, also das Bild der Kurve, mit dem Bild der Lösungskurve übereinstimmt). Der Bach verläuft immer senkrecht zu den Höhenlinien.



Lemma  

Sei ein euklidischer Vektorraum, offen,

eine differenzierbare Funktion und

das zugehörige Gradientenfeld. Es sei

eine Lösung der Differentialgleichung

Dann steht senkrecht auf dem Tangentialraum der Faser von durch für alle , für die reguläre Punkte von sind.

Beweis  

Sei ein regulärer Punkt von und sei ein Vektor aus dem Tangentialraum. Dann gilt direkt



Beispiel  

Wir betrachten die Produktabbildung

Das zugehörige Gradientenfeld ist

Die Fasern von sind das Achsenkreuz (die Faser über ) und die durch , , gegebenen Hyperbeln. Die Lösungen der linearen Differentialgleichung

sind von der Form

mit beliebigen , wie man direkt nachrechnet. Dabei ist . Für ist dies die stationäre Lösung im Nullpunkt, in dem die Produktabbildung nicht regulär ist. Bei ist , das Bild dieser Lösung ist die obere Halbdiagonale (ohne den Nullpunkt), bei ist , das Bild dieser Lösung ist die untere Halbdiagonale, bei und ist , das Bild dieser Lösung ist die untere Hälfte der Nebendiagonalen, bei und ist , das Bild dieser Lösung ist die obere Hälfte der Nebendiagonalen.

Ansonsten treffen die Lösungskurven das Achsenkreuz in einem Punkt . Wenn man diesen Punkt als Anfangswert zum Zeitpunkt nimmt, so kann man die Lösungskurven als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ),

und als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ) realisieren. Die Bahnen dieser Lösungen erfüllen die Gleichung bzw. , d.h. sie sind selbst Hyperbeln.




Differentialgleichungen höherer Ordnung
Simple Harmonic Motion Orbit.gif

Viele physikalische Bewegungsprozesse sind nicht (wie im Fall eines Löwenzahnfallschirmchens, siehe Vorlesung 37) dadurch determiniert, dass zu jedem Zeit- und Ortspunkt die Bewegungsrichtung (also die gerichtete Geschwindigkeit) vorgegeben wird, sondern dadurch, dass zu jedem Zeit- und Ortspunkt eine Kraft auf ein Teilchen wirkt, die dieses beschleunigt. In diesem Fall kann die Bewegung also nicht durch die erste Ableitung (Geschwindigkeit) modelliert werden, sondern durch die zweite Ableitung (Beschleunigung). Typische Beispiele hierzu sind die durch Gravitation oder Federkraft hervorgerufenen Bewegungen.


Definition  

Es sei ein offenes Intervall, offen und

eine Funktion. Dann nennt man den Ausdruck

eine Differentialgleichung der Ordnung .

Unter einer Lösung einer Differentialgleichung höherer Ordnung versteht man eine -mal differenzierbare Funktion

(wobei ein offenes Teilintervall ist) derart, dass

für alle gilt.

Differentialgleichungen beliebiger Ordnung können unter Inkaufnahme von neuen Variablen auf ein Differentialgleichungssystem erster Ordnung zurückgeführt werden.



Lemma  

Es sei ein Intervall, eine offene Menge und

eine Funktion.

Dann ist die Differentialgleichung höherer Ordnung

über die Beziehung

äquivalent zum Differentialgleichungssystem

Beweis  

Wenn

eine Lösung der Differentialgleichung höherer Ordnung

ist, so sind alle Funktionen für differenzierbar, und es gilt für nach Definition und schließlich


Wenn umgekehrt

eine Lösung des Differentialgleichungssystems zum Vektorfeld

ist, so ergibt sich sukzessive aus den ersten Gleichungen, dass -mal differenzierbar ist, und die letzte Gleichung des Differentialgleichungssystems besagt gerade



Mit dieser Umformung ist auch klar, wie sinnvolle Anfangsbedingungen für eine Differentialgleichung höherer Ordnung aussehen. Man muss nicht nur einen Startwert , sondern auch die höheren Ableitungen , , usw. festlegen.


<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)