Kurs:Mathematik für Anwender/Teil I/T2/Klausur mit Lösungen
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 2 | 3 | 6 | 4 | 4 | 5 | 3 | 3 | 4 | 5 | 2 | 4 | 5 | 4 | 4 | 64 |
Aufgabe (3 Punkte)
Definiere die folgenden (kursiv gedruckten) Begriffe.
- Die Exponentialreihe für .
- Der Tangens.
- Die Differenzierbarkeit einer
Abbildung
.
- Die Zahl (gefragt ist nach der analytischen Definition).
- Das Taylor-Polynom vom Grad zu einer -mal differenzierbaren Funktion
in einem Punkt .
- Eine
Treppenfunktion
auf einem beschränkten reellen Intervall .
- Für jedes
heißt die
Reihe
die Exponentialreihe in .
- Die Funktion
heißt Tangens.
- Die Funktion heißt differenzierbar in , wenn der
Limes
existiert.
- Es sei die
eindeutig bestimmte
reelle
Nullstelle
der
Kosinusfunktion
auf dem
Intervall
. Die Kreiszahl ist definiert durch
- Das Polynom
heißt das Taylor-Polynom vom Grad zu in .
- Eine
Funktion
heißt eine Treppenfunktion, wenn es eine Unterteilung
von gibt derart, dass auf jedem offenen Teilintervall konstant ist.
Aufgabe (3 Punkte)
Formuliere die folgenden Sätze.
- Die Funktionalgleichung der Exponentialfunktion.
- Die Kettenregel für differenzierbare Funktionen .
- Der Mittelwertsatz der Differentialrechnung.
- Für reelle Zahlen gilt
- Seien
Teilmengen und seien
und
Funktionen mit . Es sei in differenzierbar und sei in differenzierbar. Dann ist auch die Hintereinanderschaltung
in differenzierbar mit der Ableitung
- Es sei und sei
eine stetige, auf differenzierbare Funktion. Dann gibt es ein mit
Aufgabe (2 Punkte)
Fridolin sagt:
„Irgendwas kann am Zwischenwertsatz nicht stimmen. Für die stetige Funktion
gilt und . Nach dem Zwischenwertsatz müsste es also eine Nullstelle zwischen und geben, also eine Zahl mit . Es ist doch aber stets .“
Wo liegt der Fehler in dieser Argumentation?
Die Funktion ist im Nullpunkt nicht definiert, den Zwischenwertsatz kann man nur für stetige Funktionen anwenden, die auf einem abgeschlossenen Intervall definiert sind.
Aufgabe (3 Punkte)
Wir betrachten die Funktion
Bestimme, ausgehend vom Intervall , mit der Intervallhalbierungsmethode ein Intervall der Länge , in dem eine Nullstelle von liegen muss.
Es ist und , es muss also nach Korollar 11.2 (Mathematik für Anwender (Osnabrück 2023-2024)) eine Nullstelle im Intervall geben. Wir berechnen den Funktionswert an der Intervallmitte und erhalten
Wir müssen also mit dem rechten Teilintervall weitermachen. Dessen Intervallmitte ist . Der Funktionswert an dieser Stelle ist
Jetzt müssen wir mit dem linken Teilintervall weitermachen, dessen Mitte ist . Der Funktionswert an dieser Stelle ist
Somit wissen wir, dass es eine Nullstelle zwischen und gibt.
Aufgabe (6 Punkte)
Beweise die folgende Aussage: Jede beschränkte Folge von reellen Zahlen besitzt eine konvergente Teilfolge (Satz von Bolzano-Weierstraß).
Die Folge sei durch
beschränkt. Wir definieren zuerst induktiv eine Intervallhalbierung derart, dass in den Intervallen unendlich viele Folgenglieder liegen. Das Startintervall ist . Es sei das -te Intervall bereits konstruiert. Wir betrachten die beiden Hälften
In mindestens einer der Hälften liegen unendlich viele Folgenglieder, und wir wählen als Intervall eine Hälfte mit unendlich vielen Gliedern. Da sich bei diesem Verfahren die Intervalllängen mit jedem Schritt halbieren, liegt eine Intervallschachtelung vor. Als Teilfolge wählen wir nun ein beliebiges Element
mit . Dies ist möglich, da es in diesen Intervallen unendlich viele Folgenglieder gibt. Diese Teilfolge konvergiert nach Aufgabe 8.21 (Mathematik für Anwender (Osnabrück 2023-2024)) gegen die durch die Intervallschachtelung bestimmte Zahl .
Aufgabe (4 Punkte)
Berechne
bis auf einen Fehler von .
Wir behaupten die Abschätzungen
Um dies zu zeigen, weisen wir die Gültigkeit der Abschätzungen
nach. Diese gelten wegen
und
Aufgabe (4 Punkte)
Berechne das Cauchy-Produkt bis zur vierten Potenz der geometrischen Reihe mit der Exponentialreihe.
Die geometrische Reihe ist und die Exponentialreihe ist . Das Cauchy-Produkt von zwei Reihen ergibt sich einfach dadurch, dass man jeden Summanden mit jedem Summanden multipliziert und gleiche Potenzen aufsummiert. Daher können die Potenzen etc. ignoriert werden und es ist
Das Cauchy-Produkt bis zur vierten Potenz der beiden Reihen ist also
Aufgabe (5 Punkte)
Es sei
eine Exponentialfunktion mit . Zu jedem definiert die Gerade durch die beiden Punkte und einen Schnittpunkt mit der -Achse, den wir mit bezeichnen. Zeige
Skizziere die Situation.
Aufgrund des Strahlensatzes muss die Beziehung
gelten. Wegen
folgt daraus
Umstellen ergibt
und
und schließlich
Somit ist auch
und daher ist
Aufgabe (3 Punkte)
Bestimme die Schnittpunkte des Einheitskreises mit der durch
gegebenen Geraden.
Der Einheitskreis ist durch
gegeben. Darin setzen wir
ein und erhalten
Also ist
und damit
Somit ist
Die Schnittpunkte sind also und .
Aufgabe (3 Punkte)
Wir zeigen, dass die Reihe absolut konvergiert, woraus nach Lemma 9.9 (Mathematik für Anwender (Osnabrück 2023-2024)) die Konvergenz folgt. Wegen
ist
Die Reihe konvergiert nach [[Reelle Reihe/Kehrwerte der Quadrate/Konvergenz/Beispiel|Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Reelle Reihe/Kehrwerte der Quadrate/Konvergenz/Beispiel/Beispielreferenznummer (Mathematik für Anwender (Osnabrück 2023-2024))]], sodass nach dem Majorantenkriterium konvergiert.
Aufgabe (4 Punkte)
Es seien
periodische Funktionen mit den Periodenlängen bzw. . Der Quotient sei eine rationale Zahl. Zeige, dass auch eine periodische Funktion ist.
Der Quotient der Periodenlängen sei
mit . Also ist . Wir behaupten, dass
eine Periodenlänge für ist. Dies beruht auf
für alle , da ja mit (bzw. ) auch jedes ganzzahlige Vielfache eine Periodenlänge von (bzw. von ) ist.
Aufgabe (5 Punkte)
Für ist nach der Kettenregel
Zum Induktionsschluss sei die Aussage für Funktionen schon bewiesen, und seien Funktionen gegeben. Dann ist aufgrund der Produktregel und der Induktionsvoraussetzung
Aufgabe (2 (1+1) Punkte)
Wir betrachten die Funktion
a) Bestimme die Ableitung .
b) Bestimme die zweite Ableitung .
a) Es ist
b) Es ist
Aufgabe (4 Punkte)
Zeige, dass eine reelle Polynomfunktion
vom Grad maximal lokale Extrema besitzt, und die reellen Zahlen sich in maximal Intervalle unterteilen lassen, auf denen abwechselnd streng wachsend oder streng fallend ist.
Die Ableitung ist ein Polynom vom Grad . Dieses besitzt nach Korollar 6.6 (Mathematik für Anwender (Osnabrück 2023-2024)) höchstens Nullstellen. Nach [[Reelle Funktion/Offenes Intervall/Lokales Extremum/Differenzierbar/Ableitung null/Fakt|Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Reelle Funktion/Offenes Intervall/Lokales Extremum/Differenzierbar/Ableitung null/Fakt/Faktreferenznummer (Mathematik für Anwender (Osnabrück 2023-2024))]] besitzt daher höchstens lokale Extrema. Zwischen zwei benachbarten Nullstellen der Ableitung und auch unterhalb der kleinsten und oberhalb der größten Nullstelle ist die Ableitung entweder echt positiv oder echt negativ. Wenn wir stets benachbarte Intervalle zusammenlegen, auf denen die Ableitung jeweils positiv oder jeweils negativ ist, so erhalten wir eine Zerlegung von in Intervalle, auf denen die Ableitung positiv oder negativ mit eventuell endlich vielen Ausnahmepunkten ist, und positiv und negativ wechseln sich ab. In diesen Intervallen ist dann nach Satz 15.7 (Mathematik für Anwender (Osnabrück 2023-2024)) streng wachsend oder streng fallend.
Aufgabe (5 Punkte)
Betrachte die Funktion
Bestimme die Nullstellen und die lokalen (globalen) Extrema von . Fertige eine grobe Skizze für den Funktionsverlauf an.
Da die Exponentialfunktion keine Nullstelle besitzt, liegt nur bei , also bei eine Nullstelle vor. Unterhalb davon ist die Funktion negativ, oberhalb davon positiv.
Zur Bestimmung der lokalen Extrema leiten wir ab, was zu
führt. Die Nullstellenbestimmung der Ableitung führt auf
Quadratisches Ergänzen führt zu
bzw.
Also ist
und somit
Für ist die Ableitung negativ, für mit ist sie positiv und für wieder negativ. Daher ist die Funktion unterhalb von streng fallend, zwischen und streng wachsend und oberhalb von wieder streng fallend. Daher liegt in ein isoliertes lokales Minimum und in ein isoliertes lokales Maximum vor. Da es sonst keine lokalen Extrema gibt, und die Funktion für wächst, aber negativ bleibt, und für fällt, aber positiv bleibt, sind dies auch globale Extrema.
Aufgabe (4 Punkte)
Bestimme den Grenzwert von
im Punkt , und zwar
a) mittels Polynomdivision,
b) mittels der Regel von l'Hospital.
a) Durch Polynomdivision erhält man und . Daher ist
Daher ist
b) Die Ableitungen sind und , die beide für keine Nullstelle besitzen. Nach der Regel von l'Hospital ist daher
Aufgabe (4 Punkte)
Es ist
Es ist
und daher ist
Es ist
und daher ist
Es ist
und daher ist
Das Taylor-Polynom vom Grad in ist somit