Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 33
- Aufwärmaufgaben
Es sei ein metrischer Raum und eine Teilmenge mit der induzierten Metrik. Zeige, dass die Inklusion stetig ist.
Es sei ein metrischer Raum und seien reelle Zahlen. Es seien
und
stetige Abbildungen mit . Zeige, dass dann die Abbildung
ebenfalls stetig ist.
Es sei ein metrischer Raum und sei
eine stetige Funktion. Es sei ein Punkt mit Zeige, dass dann auch für alle aus einer offenen Ballumgebung von gilt.
Es seien und metrische Räume und es seien
zwei stetige Abbildungen. Zeige, dass die Menge
abgeschlossen in ist.
Es sei ein Untervektorraum im euklidischen Raum . Zeige, dass abgeschlossen im ist.
Zeige, dass auf dem die euklidische Metrik, die Summenmetrik und die Maximumsmetrik dieselben offenen Mengen definieren.
Wir betrachten die trigonometrische Parametrisierung des Einheitskreises, also die Abbildung
Zeige, dass eine Bijektion zwischen und dem Einheitskreis definiert, die stetig ist, deren Umkehrabbildung aber nicht stetig ist.
Es sei mit der euklidischen Metrik und mit der diskreten Metrik. Es sei
die Identität. Zeige, dass stetig ist, die Umkehrabbildung aber nicht.
Es sei
eine Abbildung, die in jeder Komponente polynomial sei und sei
eine polynomiale Funktion. Zeige, dass dann auch die Hintereinanderschaltung eine polynomiale Funktion ist.
Es sei
eine Polynomfunktion und eine Basis von mit den zugehörigen Koordinatenfunktionen . Zeige, dass auch eine Polynomfunktion in diesen Koordinaten ist.
- Aufgaben zum Abgeben
Aufgabe (4 Punkte)
Es seien , , und sei
der Kreis mit dem Mittelpunkt und dem Radius . Es sei eine Gerade in mit der Eigenschaft, dass es auf mindestens einen Punkt gibt mit . Zeige, dass ist.
Aufgabe (5 Punkte)
Im Nullpunkt befinde sich die Pupille eines Auges (oder eine Linse) und die durch bestimmte Ebene sei die Netzhaut (oder eine Fotoplatte). Bestimme die Abbildung
die das Sehen (oder Fotografieren) beschreibt (d.h. einem Punkt des Halbraumes wird durch den Lichtstrahl ein Punkt der Netzhaut zugeordnet). Ist diese Abbildung stetig, ist sie linear?
Aufgabe (8 Punkte)
Ein Billardtisch sei cm breit und cm lang, die Kugeln haben einen Radius von cm und die Ecklöcher seien ein Viertelkreis[1] mit Radius cm um einen Eckpunkt. An den Tisch sei ein Koordinatensystem angelegt, das parallel zu den Tischseiten verläuft und bei dem die linke untere Ecke der Nullpunkt sei.
Berechne für die linke untere Ecke die Koordinaten der beiden Punkte des Lochrandes, durch die der Mittelpunkt einer Kugel hindurch muss, wenn sie eingelocht werden soll. Wie lang ist der Abstand zwischen diesen beiden Punkten, wie lang ist die Lochberandung zwischen diesen Punkten?
Eine Kugel soll nun direkt (ohne Verwendung von Bande oder anderen Kugeln) in dieses Loch versenkt werden, wobei der Queuestoß stets in Richtung der Kugelmitte und an deren „Äquator“ durchgeführt wird. Welche Winkeltoleranz zum Versenken der Kugel liegt vor, wenn der Kugelmittelpunkt die folgende Position besitzt:
a) (63.5, 63.5)
b) (100, 100)
c) (63.5, 192,5)
d) (63.5, 10)
Welche Länge hat das zugehörige Kreissegment auf der Kugel?
Aufgabe (4 Punkte)
Es seien metrische Räume und seien
Abbildungen. Es sei stetig in und es sei stetig in . Zeige, dass die Hintereinanderschaltung
Aufgabe (4 Punkte)
Aufgabe (5 Punkte)
- Aufgabe zum Hochladen
Aufgabe (8 Punkte)
Fertige in der Situation der Aufgabe 33.18 eine hochladbare Grafik an, die auf dem Billardtisch die Linien von gleichem Schwierigkeitsgrad (also gleicher Winkeltoleranz zum Einlochen) zeigt.
- Fußnoten
- ↑ Diese Aufgabe ergibt auch Sinn, wenn die Löcher volle Kreise um die Eckpunkte sind, hat aber ein anderes Ergebnis.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|