Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II/Anhang/Topologie

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Wir stellen hier einige topologische Begriffe zusammen, die für die Äquivalenz von Normen und für die Konvergenz von (stochastischen) Matrizen relevant sind.


Definition  

Ein topologischer Raum heißt hausdorffsch, wenn es zu je zwei verschiedenen Punkten zwei offene Mengen und gibt mit und .


Definition  

Sei ein metrischer Raum und sei eine Folge in . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.

Die Konvergenz in einem metrischen Raum ist ein Spezialfall der Konvergenz in einem topologischen Raum, siehe Aufgabe *****.


Definition  

Es sei eine Folge in einem topologischen Raum . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

Zu jeder offenen Umgebung von gibt es ein derart, dass für alle die Folgenglieder zu gehören.

In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.


Definition  

Sei ein metrischer Raum und sei eine Folge in . Ein Punkt heißt Häufungspunkt der Folge, wenn es für jedes unendlich viele Folgenglieder mit gibt.



Satz  

Sei ein metrischer Raum und eine Teilmenge.

Dann ist genau dann abgeschlossen, wenn jede Folge , die in konvergiert, bereits in konvergiert.

Beweis  

Sei zunächst abgeschlossen und eine Folge gegeben, die in gegen konvergiert. Wir müssen zeigen, dass ist. Angenommen, dies wäre nicht der Fall. Dann liegt im offenen Komplement von und daher gibt es ein derart, dass der gesamte -Ball im Komplement von liegt. Also ist

Da die Folge aber gegen konvergiert, gibt es ein derart, dass alle Folgenglieder , zu diesem Ball gehören. Da sie andererseits in liegen, ist dies ein Widerspruch.
  Sei nun nicht abgeschlossen. Wir müssen eine Folge in konstruieren, die in konvergiert, deren Grenzwert aber nicht zu gehört. Da nicht abgeschlossen ist, ist das Komplement nicht offen. D.h. es gibt einen Punkt derart, dass in jedem -Ball von auch Punkte außerhalb von , also in liegen. Insbesondere ist also für jede natürliche Zahl der Durchschnitt

Wir wählen aus dieser Schnittmenge ein Element und behaupten, dass die sich ergebende Folge die gewünschten Eigenschaften besitzt. Zunächst liegen nach Konstruktion alle Folgenglieder in . Die Folge konvergiert gegen , da man sich hierzu auf

beschränken kann und alle Folgenglieder , , in liegen. Da der Grenzwert einer Folge im Falle der Existenz eindeutig bestimmt ist, und ist, konvergiert die Folge in nicht.




Satz  

Sei eine Teilmenge.

Dann ist genau dann kompakt, wenn jede Folge in eine in konvergente Teilfolge besitzt.

Beweis  

Wenn nicht beschränkt ist, so gibt es zu jeder natürlichen Zahl ein mit . Diese Folge kann keine konvergente Teilfolge besitzen. Wenn nicht abgeschlossen ist, so gibt es nach Fakt ***** eine Folge , die gegen ein , konvergiert. Jede Teilfolge davon konvergiert ebenfalls gegen , so dass es keine in konvergente Teilfolge geben kann.

Sei nun abgeschlossen und beschränkt, und sei eine Folge vorgegeben. Für diese Folge ist insbesondere jede Komponentenfolge beschränkt. Wir betrachten die erste Komponente . Nach dem Satz von Bolzano-Weierstrass gibt es eine Teilfolge derart, dass die erste Komponente dieser Folge konvergiert. Aus dieser Teilfolge wählen wir nun eine weitere Teilfolge derart, dass auch die zweite Komponentenfolge konvergiert. Insgesamt erhält man durch dieses Verfahren eine Teilfolge, wo jede Komponentenfolge konvergiert. Nach Fakt ***** konvergiert dann die gesamte Teilfolge in . Da abgeschlossen ist, liegt nach Fakt ***** der Grenzwert in .




Lemma  

Es sei ein topologischer Raum mit einer abzählbaren Basis.

Dann ist genau dann kompakt, wenn jede Folge in einen Häufungspunkt (in ) besitzt.

Beweis  

Sei kompakt und sei eine Folge gegeben.  Nehmen wir an, dass diese Folge keinen Häufungspunkt besitzt. Das bedeutet, dass es zu jedem eine offene Umgebung gibt, in der es nur endlich viele Folgenglieder gibt. Wegen gibt es nach Voraussetzung eine endliche Teilüberdeckung . Diese enthält einerseits alle Folgenglieder und andererseits nur endlich viele Folgenglieder, ein Widerspruch.

Sei die Folgeneigenschaft erfüllt und sei eine Überdeckung mit offenen Mengen. Da eine abzählbare Basis besitzt, gibt es nach Aufgabe ***** eine abzählbare Teilmenge mit . Wir können annehmen.  Nehmen wir an, dass die Überdeckung keine endliche Teilüberdeckung besitzt. Dann ist insbesondere , und daher gibt es zu jedem ein  mit . Nach Voraussetzung besitzt diese Folge einen Häufungspunkt . Da eine Überdeckung vorliegt, gibt es ein mit . Da ein Häufungspunkt ist, liegen unendlich viele Folgenglieder in . Dies ist ein Widerspruch, da nach Konstruktion für die Folgenglieder nicht zu gehören.




Satz  

Es sei eine Teilmenge Dann sind folgende Aussagen äquivalent.

  1. ist überdeckungskompakt.
  2. Jede Folge in besitzt einen Häufungspunkt in .
  3. Jede Folge in besitzt eine in konvergente Teilfolge.
  4. ist abgeschlossen und beschränkt.

Beweis  

Die Äquivalenz von (1) und (2) wurde allgemeiner in Fakt ***** bewiesen.
Die Äquivalenz von (2) und (3) ist klar.
Die Äquivalenz von (3) und (4) wurde in Fakt ***** gezeigt.




Lemma  

Es sei

eine Abbildung zwischen den metrischen Räumen und und sei ein Punkt. Dann sind folgende Aussagen äquivalent.

  1. ist stetig im Punkt .
  2. Für jedes gibt es ein mit der Eigenschaft, dass aus folgt, dass ist.
  3. Für jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .

Beweis  

Die Äquivalenz von (1) und (2) ist klar.
Sei nun (2) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass ist. Dazu sei gegeben. Wegen (2) gibt es ein mit der angegebenen Eigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle gilt

Nach der Wahl von ist dann

so dass die Bildfolge gegen konvergiert.

Sei (3) erfüllt und vorgegeben.  Wir nehmen an, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand größer als besitzt. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenwerte zumindest ist. Dies ist ein Widerspruch zu (3).




Satz  

Es sei

eine Abbildung zwischen den metrischen Räumen und . Dann sind folgende Aussagen äquivalent.

  1. ist stetig in jedem Punkt .
  2. Für jeden Punkt und jedes gibt es ein mit der Eigenschaft, dass aus folgt, dass ist.
  3. Für jeden Punkt und jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
  4. Für jede offene Menge ist auch das Urbild offen.

Beweis  

Die Äquivalenz der ersten drei Formulierungen folgt direkt aus Lemma Anhang B.9.
Sei (1) erfüllt und eine offene Menge gegeben mit dem Urbild . Sei ein Punkt mit dem Bildpunkt . Da offen ist, gibt es nach Definition ein mit . Nach (2) gibt es ein mit . Daher ist

und wir haben eine offene Ballumgebung von innerhalb des Urbilds gefunden.

Sei (4) erfüllt und mit und vorgegeben. Da der offene Ball offen ist, ist wegen (4) auch das Urbild offen. Da zu dieser Menge gehört, gibt es ein mit

so dass (1) erfüllt ist.



Satz

Es seien und topologische Räume und es sei

eine stetige Abbildung. Es sei kompakt.

Dann ist das Bild ebenfalls kompakt ist.

Beweis

Siehe Aufgabe 52.16.