Kurs:Lineare Algebra/Teil II/4/Klausur mit Lösungen

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 0 6 0 7 6 1 0 1 0 2 7 0 3 5 44




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Orthogonale Vektoren in einem reellen Vektorraum mit Skalarprodukt.
  2. Die Gramsche Matrix zu einer Bilinearform auf einem - Vektorraum bezüglich einer Basis von .
  3. Ein selbstadjungierter Endomorphismus

    auf einem - Vektorraum mit Skalarprodukt.

  4. Ein Normalteiler in einer Gruppe .
  5. Eine Ordnungsrelation auf einer Menge .
  6. Eine Körpererweiterung.


Lösung

  1. Zwei Vektoren heißen orthogonal zueinander, wenn

    ist.

  2. Die - Matrix

    heißt die Gramsche Matrix von bezüglich der Basis.

  3. Der Endomorphismus heißt selbstadjungiert, wenn

    für alle gilt.

  4. Ein Untergruppe ist ein Normalteiler, wenn

    für alle ist.

  5. Die Relation heißt Ordnungsrelation, wenn folgende drei Bedingungen erfüllt sind.
    1. Es ist für alle .
    2. Aus und folgt stets .
    3. Aus und folgt .
  6. Es sei ein Körper und ein Unterkörper von . Dann heißt die Inklusion heißt eine Körpererweiterung.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Die Polarisationsformel für ein Skalarprodukt auf einem reellen Vektorraum.
  2. Der Charakterisierungssatz für eigentliche Isometrie in der reellen Ebene.
  3. Der Satz über die universelle Eigenschaft des Dachproduktes.


Lösung

  1. Die Polarisationsformel besagt
  2. Jede eigentliche, lineare Isometrie
    ist eine Drehung.
  3. Es sei ein Körper, ein - Vektorraum und . Es sei

    eine alternierende multilineare Abbildung in einen weiteren -Vektorraum . Dann gibt es eine eindeutig bestimmte lineare Abbildung

    derart, dass das Diagramm
    kommutiert.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (6 Punkte)

Es seien und euklidische Vektorräume und sei

eine lineare Abbildung. Zeige, dass die folgenden Aussagen äquivalent sind.

  1. ist eine Isometrie.
  2. Für jede Orthonormalbasis , von ist , Teil einer Orthonormalbasis von .
  3. Es gibt eine Orthonormalbasis , von derart, dass , Teil einer Orthonormalbasis von ist.


Lösung

Aus (1) folgt (2). Wenn eine Isometrie vorliegt, und , , eine Orthonormalbasis von ist, so ist

und somit ist , , eine Orthonormalbasis von . Diese kann man zu einer Orthonormalbasis von ergänzen.

Von (2) nach (3) ist klar, da es Orthonormalbasen von gibt.

Von (3) nach (1). Es sei , , eine Orthonormalbasis von mit der Eigenschaft, dass

Teil einer Orthonormalbasis von ist. Für zwei beliebige Vektoren und von ist dann

es liegt also eine Isometrie vor.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (7 Punkte)

Es seien verschiedene Punkte in einer euklidischen Ebene. Zeige, dass die Mittelsenkrechte zu und aus allen Punkten besteht, die zu und den gleichen Abstand haben.


Lösung

Es sei

der Mittelpunkt der beiden Eckpunkte und ein zu senkrechter Vektor, so dass die Punkte auf der Mittelsenkrechten gleich mit sind.

Es sei zunächst ein Punkt der Mittelsenkrechte, den wir als

ansetzen können. Es ist unter Verwendung des Satzes des Pythagoras

Das gleiche Ergebnis ergibt sich für .

Es sei nun ein Punkt, der zu und den gleichen Abstand besitzt. Der Abstand von zur Geraden durch und werde im Punkt angenommen. Dann steht die Gerade durch und senkrecht auf der Geraden durch und und nach dem Satz des Pythagoras gilt

und entsprechend

Nach Voraussetzung ist also

und somit ist

der Mittelpunkt der Strecke von nach . Also liegt auf der Mittelsenkrechten.


Aufgabe (6 Punkte)

Beweise den Trägheitssatz von Sylvester.


Lösung

Bezüglich einer Orthogonalbasis von (die es nach Fakt ***** gibt) hat die Gramsche Matrix natürlich Diagonalgestalt. Es sei die Anzahl der positiven Diagonaleinträge und die Anzahl der negativen Diagonaleinträge. Die Basis sei so geordnet, dass die ersten Diagonaleinträge positiv, die folgenden Diagonaleinträge negativ und die übrigen seien. Auf dem -dimensionalen Unterraum ist die eingeschränkte Bilinearform positiv definit, so dass gilt. Sei , auf diesem Unterraum ist die Bilinearform negativ semidefinit. Dabei ist , und diese beiden Räume sind orthogonal zueinander.

 Angenommen, es gebe einen Unterraum , auf dem die Bilinearform positiv definit ist, und dessen Dimension größer als ist. Die Dimension von ist und daher ist nach Fakt *****.

Für einen Vektor , , ergibt sich aber direkt der Widerspruch und .


Aufgabe (1 Punkt)

Ist die Einschränkung einer Minkowski-Form im auf einen -dimensionalen Untervektorraum wieder eine Minkowski-Form?


Lösung

Da eine Minkowski-Form nach Definition vom Typ ist, gibt es einen -dimensionalen Untervektorraum, auf dem die Einschränkung positiv definit, also keine Minkowski-Form ist.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (1 Punkt)

Es sei eine kommutative Gruppe und

ein surjektiver Gruppenhomomorphismus. Zeige, dass ebenfalls kommutativ ist.


Lösung

Es seien . Dann gibt es mit und . Dann ist


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (2 Punkte)

Bestimme, ob die beiden Basen des ,

die gleiche Orientierung repräsentieren oder nicht.


Lösung

Die Determinante links ist

und die Determinante rechts ist

Da beide Determinanten positiv sind, repräsentieren sie die gleiche Orientierung des .


Aufgabe (7 (3+2+2) Punkte)

  1. Zeige, dass die Gruppe nicht die eigentliche Symmetriegruppe einer Teilmenge ist.
  2. Zeige, dass man die Gruppe als Untergruppe der vollen Isometriegruppe realisieren kann.
  3. Betrachte die eigentliche Symmetriegruppe eines Quaders mit drei verschiedenen Seitenlängen. Bei ihm ist zu jeder Geraden durch gegenüberliegende Seitenmittelpunkte die Halbdrehung um diese Achse eine Symmetrie. Widerspricht dies nicht Teil (1)?


Lösung

  1. Die endlichen Gruppen, die als eigentliche Bewegungsgruppe eines geometrisches Objektes auftreten, sind in Fakt ***** klassifiziert. Die Gruppe hat acht Elemente, deshalb scheiden die Tetraedergruppe, die Würfelgruppe und die Ikosaedergruppe aus. Aufgrund der Anzahl könnte höchstens die zyklische Gruppe der Ordnung , also sein, oder die Diedergruppe . Diese enthält aber die zyklische Gruppe der Ordnung vier. In haben aber alle Elemente außer dem neutralen Element die Ordnung , so dass auch diese beiden Gruppen ausgeschlossen sind.
  2. Die acht Matrizen

    sind allesamt Isometrien, und da es sich um Diagonalmatrizen handelt, bilden sie eine Gruppe, die isomorph zu

    ist.

  3. Die Hintereinanderschaltung von zwei Halbdrehungen um verschiedene Quaderachsen ergibt die Halbdrehung um die dritte Achse, deshalb ist die Symmetriegruppe nicht , sondern .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Es sei eine spaltenstochastische Matrix, bei der eine Zeile ausschließlich aus positiven Einträgen bestehe. Zeige, dass die Folge gegen eine Matrix konvergiert, bei der jede Spalte gleich ist.


Lösung

Nach Fakt ***** konvergiert unter der gegebenen Voraussetzung für jede Startverteilung die Folge , , gegen die eindeutig bestimmte Eigenverteilung . Dies gilt insbesondere für die Standardverteilungen . Da die -te Spalte der Matrix ist, konvergiert gegen diejenige Matrix, deren sämtliche Spalten gleich der Eigenverteilung sind.


Aufgabe (5 Punkte)

Beweise die universelle Eigenschaft des Dachprodukts.


Lösung

Wir verwenden die Notation aus Fakt *****. Durch die Zuordnung

wird nach Satz 10.10 (Lineare Algebra (Osnabrück 2017-2018)) eine - lineare Abbildung

definiert. Da multilinear und alternierend ist, wird unter der Untervektorraum auf abgebildet. Nach Fakt ***** gibt es daher eine -lineare Abbildung

die mit verträglich ist.
Die Eindeutigkeit ergibt sich daraus, dass die ein Erzeugendensystem von bilden und diese auf abgebildet werden müssen.