Lösung
- Ein Skalarprodukt auf ist eine Abbildung
-
mit folgenden Eigenschaften:
- Es ist
-
für alle , und ebenso in der zweiten Komponente.
- Es ist
-
für alle .
- Es ist für alle und genau dann, wenn ist.
- Eine polynomiale Funktion ist eine
Funktion
-
die man als eine Summe der Form
-
mit schreiben kann, wobei nur endlich viele sind.
- Die Abbildung heißt stark kontrahierend, wenn es eine nichtnegative
reelle Zahl
gibt mit
-
für alle .
- Es sei ein
offenes reelles Intervall.
Eine
Differentialgleichung
der Form
-
wobei
-
eine
Matrix
ist, deren Einträge allesamt
Funktionen
-
sind und wobei
-
eine Abbildung ist, heißt inhomogenes lineares gewöhnliches Differentialgleichungssystem.
- Der Gradient von in ist der eindeutig bestimmte Vektor mit
-
für alle .
- Man sagt, dass das Vektorfeld lokal einer Lipschitz-Bedingung genügt, wenn es zu jedem Punkt eine offene Umgebung
-
derart gibt, dass das auf eingeschränkte Vektorfeld einer
Lipschitz-Bedingung
genügt.
Lösung
- Es sei ein Vektorraum über mit einem Skalarprodukt und der zugehörigen Norm . Dann gilt die Abschätzung
-
für alle .
- Es sei offen und sei
-
eine stetig differenzierbare Abbildung. Es sei und es sei die Faser durch . Das
totale Differential sei surjektiv.
Dann gibt es eine offene Menge
, ,
eine offene Menge und eine stetig differenzierbare Abbildung
-
derart, dass ist und eine Bijektion
-
induziert.
- Es sei
eine sternförmige offene Teilmenge und
-
ein stetig differenzierbares Vektorfeld. Dann sind die folgenden Eigenschaften äquivalent.
- ist ein Gradientenfeld.
- erfüllt die Integrabilitätsbedingung.
- Für jeden stetig differenzierbaren Weg
hängt das Wegintegral nur vom Anfangspunkt und Endpunkt ab.
Entscheide, ob das
uneigentliche Integral
-
existiert.
Lösung
Lösung
Die folgende Tabelle zeigt die Gastgeberländer und die Weltmeister der Fußballweltmeisterschaften von 1978 bis 2014, aus mathematischen Gründen ohne 1998.
Jahr |
Gastgeber |
Weltmeister
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Es sei die Menge der Gastgeberländer und
-
die Abbildung, die dem Gastgeberland den Weltmeister zuordnet. Gibt es auf eine Metrik derart, dass zu einem vollständigen metrischen Raum wird und dass eine starke Kontraktion ist?
Lösung
Es sei eine nichtleere Teilmenge, .
a) sei nicht beschränkt. Zeige, dass es eine stetige Funktion
-
gibt, deren Bild nicht beschränkt ist.
b) sei nicht abgeschlossen. Zeige, dass es eine stetige Funktion
-
gibt, deren Bild nicht beschränkt ist.
Lösung
a) Wir betrachten die stetige Funktion
-
und die
(ebenfalls stetige) Einschränkung davon auf . Da unbeschränkt ist, gibt es für jedes ein mit
-
Daher ist natürlich
(bei ) auch
-
sodass das Bild von nicht beschränkt ist.
b) sei nicht abgeschlossen. Dann gibt es eine Folge in , die gegen einen Punkt mit konvergiert. Es sei
-
Wir betrachten die Funktion
-
Diese Funktion ist auf
definiert, da sie auf
definiert ist, da die Summe der Quadrate positiv ist, sobald in einer Komponente
ist. Diese Funktion ist stetig als Kehrwertfunktion einer nullstellenfreien stetigen Funktion.
Wir behaupten, dass diese Funktion auf unbeschränkt ist. Dazu sei vorgegeben und sei mit . Da die Folge gegen konvergiert, gibt es ein mit
-
Daher ist
-
und die Funktion ist auf unbeschränkt.
Bestimme die
Länge
der durch
-
gegebenen Schraubenlinie für zwischen
und ,
wobei
.
Lösung
Es ist
Wir betrachten das lineare Differentialgleichungssystem
-
Es sei
-
eine Lösung dieser Differentialgleichung. Zeige, dass die beiden Funktionen
und
auf
(dem Bild)
der Lösung konstant sind.
Lösung
Es sei
.
Da es sich um eine Lösung handelt gilt
-
-
und
-
Daraus folgt direkt, dass die dritte Komponente, also
,
einer Lösung konstant ist.
Um zu zeigen, dass auch
auf der Lösung konstant ist, berechnen wir die Ableitung der Verknüpfung . Diese ist
Also ist ebenfalls konstant auf der Lösung.
Es sei ein
euklidischer Vektorraum,
ein fixierter Vektor und
-
ein stetiges Vektorfeld mit der Eigenschaft
-
für alle
.
Es sei
-
eine Lösung zur Differentialgleichung
-
Zeige, dass auch
-
eine Lösung dieser Differentialgleichung ist.
Lösung
Es ist
daher ist auch eine Lösung.
Lösung
Wir haben nach Voraussetzung
(wobei wir
setzen)
-
und
-
mit linearen Abbildungen
und
,
und mit in stetigen Funktionen
und
,
die beide in den Wert annehmen. Damit gilt
Dabei haben wir in der dritten Gleichung die lineare Approximation für
-
eingesetzt. Die beiden letzten Gleichungen gelten nur für
.
Der Ausdruck
-
ist unser Kandidat für die Abweichungsfunktion. Der erste Summand ist in
stetig und hat dort auch den Wert . Es genügt also den zweiten Summanden zu betrachten. Der -Ausdruck ist in einer Umgebung der Null beschränkt, da auf der
kompakten
Einheitssphäre
nach Satz 36.11 (Analysis (Osnabrück 2021-2023))
beschränkt ist und da in stetig ist. Daher hängt die Stetigkeit nur von dem rechten Faktor ab. Aber hat für den Grenzwert . Damit ist auch in stetig und hat dort den Grenzwert .
Bestimme die Jacobi-Matrix der Abbildung
-
in jedem Punkt.
Lösung
Die partiellen Ableitungen sind
-
-
-
-
-
und
-
Somit ist die Jacobi-Matrix in einem Punkt gleich
-
Lösung
- Es ist
-
Um die kritischen Punkte zu finden setzt man diese beiden Funktionen gleich . Das bedeutet
-
und
-
Es ist also
-
und daher gibt es die beiden kritischen Punkte
-
Die Hesse-Matrix ist
-
In ist dies
-
wobei der erste Minor und die Determinante ist. Also liegt nach
Satz 50.2 (Analysis (Osnabrück 2021-2023))
kein lokales Extremum vor. In ist die Hesse-Matrix
-
die Minoren sind und daher ist die Matrix positiv definit und es liegt ein lokales Minimum vor, das auch ein globales Minimum ist.
- Da in ein globales Minimum vorliegt, gilt dies auch für die Einschränkung der Funktion auf jede Gerade durch diesen Punkt. Betrachten wir also den Nullpunkt . Eine Gerade durch diesen Punkt wird durch
-
mit
, ,
beschrieben. Die eingeschränkte Funktion auf eine solche Gerade ist durch
-
gegeben. Die Ableitungen davon sind
-
-
und
-
Im Nullpunkt ist dabei
-
-
und
-
Bei und liegt längs dieser Geraden ein lokales Minimum vor. Ebenso bei und . Bei und und bei und liegt ein lokales Maximum vor. Bei ist , die beiden ersten Ableitungen sind und die dritte nicht, daher liegt nach
Satz 22.6 (Analysis (Osnabrück 2021-2023))
kein lokales Extremum vor. Bei und liegt aus dem gleichen Grund kein lokales Extremum vor.
Bestimme die
lokalen Extrema
der Funktion
-
auf der Ellipse
-
Lösung
Wir verwenden
Korollar 54.7 (Analysis (Osnabrück 2021-2023))
mit und der Linearform . Die notwendige Bedingung für ein lokales Extremum führt auf
-
Dies bedeutet
und .
Einsetzen in die Gleichung für liefert
Also ist
-
Es seien
-
die zugehörigen Punkte, an denen ein lokales Extremum vorliegen kann. Wegen und liegt wegen der Kompaktheit der Ellipse in das globale Maximum und in das globale Minimum vor.
Zeige, dass die Abbildung
-
Lipschitz-stetig
ist.
Lösung
Wir behaupten, dass die Quadrierung Lipschitz-stetig mit er Lipschitz-Konstanten ist. Dies ergibt sich aus
Wir betrachten das Vektorfeld
-
mit
-
Zeige auf zweifache Weise, dass kein Gradientenfeld ist.
- Mit der Integrabilitätsbedingung.
- Mit Wegintegralen.
Lösung
- Es ist
-
und
-
Daher ist die Integrabilitätsbedingung nicht erfüllt und es kann kein Gradientenfeld vorliegen.
- Wir betrachten Wegintegrale mit dem Anfangs- und Endpunkt , in einem Gradientenfeld ist für solche geschlossenen Wege das Wegintegral gleich . Wir betrachten den Weg
-
Das Wegintegral dazu ist
-
Der Integrand ist hier stets negativ und daher ist auch das Integral negativ und nicht . Also ist kein Gradientenfeld.