Kurs:Algebraische Kurven/7/Klausur mit Lösungen

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Punkte 3 3 2 4 4 4 2 10 4 3 4 4 8 2 6 63




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine affin-lineare Variablentransformation.
  2. Eine rationale ebene Kurve.
  3. Ein -Modul über einem kommutativen Ring .
  4. Die numerische Einbettungsdimension eines numerischen Monoids .
  5. Eine formale Potenzreihe über einem kommutativen Ring in der Variablenmenge .
  6. Das Nullstellengebilde zu einem homogenen Ideal .


Lösung

  1. Man nennt eine Abbildung der Form

    wobei eine invertierbare Matrix ist, eine affin-lineare Variablentransformation.

  2. Eine ebene algebraische Kurve heißt rational, wenn sie irreduzibel ist und es eine rationale Parametrisierung für sie gibt.
  3. Man nennt einen -Modul, wenn eine Operation

    festgelegt ist, die folgende Axiome erfüllt (dabei seien und beliebig):

    1. ,
    2. ,
    3. ,
    4. .
  4. Man nennt die minimale Anzahl von Elementen in einem Erzeugendensystem für die Einbettungsdimension von .
  5. Eine formale Potenzreihe ist ein Ausdruck der Form

    wobei ist für alle .

  6. Man nennt

    das projektive Nullstellengebilde zu .


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die Parametrisierung von Quadriken.
  2. Der Satz über den globalen Schnittring eines -Spektrums.
  3. Der Satz über den projektiven Abschluss zu einer affinen Varietät .


Lösung

  1. Sei eine Quadrik in zwei Variablen, also

    (mit , , nicht alle ). Es sei vorausgesetzt, dass es mindestens einen Punkt auf der Quadrik gibt. Dann gibt es Polynome , , derart, dass das Bild der rationalen Abbildung

    in liegt.
  2. Sei ein algebraisch abgeschlossener Körper, eine reduzierte -Algebra von endlichem Typ und sei das -Spektrum von . Dann ist
  3. Sei ein algebraisch abgeschlossener Körper und sei eine affine Varietät. Dann wird der projektive Abschluss durch beschrieben,


Aufgabe (2 Punkte)

Sei ein Integritätsbereich und der Polynomring über . Zeige, dass die Einheiten von genau die Einheiten von sind.


Lösung

Sei eine Einheit. Dann gibt es ein mit und die gleiche Identität gilt auch im Polynomring. Also ist

Sei nun

() eine Einheit in . Dann gibt es ein Polynom

() mit

Da ein Integritätsbereich ist, ist und das Produkt hat die Gestalt

Daher ist

und

das Polynom ist also eine konstante Einheit.


Aufgabe (4 Punkte)

Sei eine Primzahl und sei ein Polynom mit Koeffizienten in vom Grad . Zeige, dass es ein Polynom mit einem Grad derart gibt, dass für alle Elemente die Gleichheit

gilt.


Lösung

Wir führen im Polynomring die Division mit Rest von durch durch und erhalten

Dabei ist oder aber der Grad von ist (das Nullpolynom habe jeden Grad). Setzt man links und rechts ein Element ein, so ist stets nach dem kleinen Fermat, d.h. der linke Summand ist immer null und damit stimmen und an diesen Stellen überein.


Aufgabe (4 Punkte)

Bestimme die Schnittpunkte des Einheitskreises mit der Geraden, die durch die beiden Punkte und verläuft.


Lösung

Der Richtungsvektor der Geraden ist . Somit besitzt die Geradengleichung die Form

Einsetzen eines Punkt ergibt . Somit ist

Dies setzen wir in die Kreisgleichung

ein und erhalten

oder

Die Normierung davon ist

Somit ist

und

Die Schnittpunkte sind also


Aufgabe (4 Punkte)

Sei ein Körper. Betrachte die durch

definierte Parametrisierung. Bestimme eine (nichttriviale) algebraische Gleichung, die für alle Bildpunkte dieser Abbildung erfüllt ist. Man gebe auch einen Punkt in der affinen Ebene an, der nicht auf der Bildkurve liegt.


Lösung

Wir berechnen die ersten Monome in und . Es ist

Wir brauchen eine nicht-triviale Relation dieser Polynome aus . Es ist

Also ist

eine algebraische Relation für die Bildkurve.


Aufgabe (2 Punkte)

Sei ein noetherscher, kommutativer Ring. Zeige, dass dann auch jeder Restklassenring noethersch ist.


Lösung

Sei ein Ideal und sei das Urbildideal davon. Dieses ist endlich erzeugt nach Voraussetzung, also . Die Restklassen dieser Erzeuger, also , bilden ein Idealerzeugendensystem von : Für ein Element gilt ja in und damit in .


Aufgabe (10 Punkte)

Beweise die algebraische Version des Hilbertschen Nullstellensatzes.


Lösung

Wir setzen . Sei der Quotientenkörper von (innerhalb von ). Wir haben also eine Körperkette

Wir wollen zeigen, dass endlich über ist, und dazu genügt es nach [[Endliche Körpererweiterung/Gradformel/Fakt|Kurs:Körper- und Galoistheorie (Osnabrück 2011)/7/Klausur mit Lösungen (Körper- und Galoistheorie (Osnabrück 2011)) (Algebraische Kurven (Osnabrück 2017-2018))]] zu zeigen, dass jeder Schritt in der Körperkette endlich ist. Sei angenommen, dass nicht endlich ist, aber alle folgenden Schritte endlich sind. Wir wenden Lemma 10.5 (Algebraische Kurven (Osnabrück 2017-2018)) auf

an und erhalten, dass endlich erzeugt über ist. Dann ist insbesondere auch endlich erzeugt über . Andererseits ist der Quotientenkörper von . Wir haben also eine Kette

wo endlich erzeugt über ist, aber nicht endlich. Wäre algebraisch über , so auch endlich, und dann wäre bereits ein Körper nach Aufgabe 10.1 (Algebraische Kurven (Osnabrück 2017-2018)). Dann wäre die letzte Kette insgesamt endlich, im Widerspruch zur Wahl von . Also ist transzendent über . Dann ist aber isomorph zu einem Polynomring in einer Variablen und ist isomorph zum rationalen Funktionenkörper über . Dieser ist aber nach Lemma 10.6 (Algebraische Kurven (Osnabrück 2017-2018)) nicht endlich erzeugt, so dass sich erneut ein Widerspruch ergibt.


Aufgabe (4 Punkte)

Es sei eine Primzahl und . Zeige, dass der Restklassenring nur die beiden trivialen idempotenten Elemente und besitzt.


Lösung

Sei ein idempotentes Element. Dies bedeutet

und somit ist ein Vielfaches von , sagen wir

Nehmen wir an. Wegen der eindeutigen Primfaktorzerlegung in ist

und

mit

Wären , so wäre sowohl als auch ein Vielfaches von , und das würde dann auch für gelten, was nicht der Fall ist. Also ist oder , was oder im Restklassenring bedeutet.


Aufgabe (3 Punkte)

Bestimme die Primfaktorzerlegung des Polynoms

und bestimme die Singularitäten der zugehörigen affinen Kurve samt ihren Multiplizitäten und Tangenten.


Lösung

Offenbar ist durch eine Zerlegung des Polynoms in Primfaktoren gegeben. Um singuläre Punkte zu bestimmen, untersuchen wir die partiellen Ableitungen.

Man sieht unmittelbar, dass diese beiden Gleichungen genau dann erfüllt sind, wenn . Da dieser Punkt auch der Kurvengleichung genügt, ist dies ein (der) singuläre Punkt der Kurve. Das Polynom, welches die Kurve beschreibt, ist schon homogen vom Grad , also ist die Multiplizität . Die Tangenten sind also durch und gegeben.


Aufgabe (4 Punkte)

Bestimme die Einheiten im Ring , wobei ein Körper ist.


Lösung

Die Einheiten sind genau die Elemente der Form

Solche Elemente sind Einheiten, da ja

gilt. Wenn umgekehrt mit eine Einheit ist, so gibt es ein mit entsprechend und mit

Dabei seien die angeführten Koeffizienten . Das Produkt ist daher von der Form

Dies kann nur dann gleich sein, wenn

ist, was nur bei möglich ist.


Aufgabe (4 Punkte)

Sei ein Körper und eine integre, endlich erzeugte -Algebra mit Quotientenkörper . Sei . Zeige, dass die Menge

offen in ist (dabei bezeichnet den lokalen Ring im Punkt ).


Lösung

Wir zeigen, dass es zu jedem Punkt mit eine offene Umgebung des Punktes gibt derart, dass die Eigenschaft für jeden Punkt der Umgebung gilt. Damit ist dann die Vereinigung dieser offenen Umgebungen offen. Der lokale Ring hat die Gestalt mit einem maximalen Ideal in . Die Zugehörigkeit bedeutet, dass man schreiben kann mit . Damit ist eine offene Umgebung und ist für jeden Punkt dieser offenen Umgebung ein erlaubter Nenner, so dass für jeden Punkt ebenfalls gilt.


Aufgabe (8 Punkte)

Sei ein Körper und sei

ein surjektiver Gruppenhomomorphismus mit für alle . Zeige, dass

ein diskreter Bewertungsring ist.


Lösung

Zuerst zeigen wir, dass ein Unterring des Körpers ist. Es ist . Da ein Gruppenhomomorphismus ist, muss sein. Für zwei Elemente ist und damit , da ein Gruppenhomomorphismus vorliegt, und ebenso

nach Voraussetzung, so dass multiplikativ und additiv abgeschlossen ist. Ferner ist , woraus aber und somit folgt. Also gehören auch die Negativen zu , und somit liegt ein kommutativer Ring vor.

Weiterhin muss ein lokaler Ring sein. Wir behaupten, dass

das einzige maximale Ideal ist. Die gehört dazu und wegen ist die Menge additiv abgeschlossen. Für und ist und und daher , so dass die Menge abgeschlossen unter Skalarmultiplikation ist. Also liegt ein Ideal vor.

Das Komplement besteht aus allen Elementen mit. Dann ist aber auch und damit , d.h. diese Elemente sind alle Einheiten. Daher ist maximal.

Wir müssen noch zeigen dass ein diskreter Bewertungsring vorliegt. Sei hierzu ein Element mit , was es wegen der vorausgesetzten Surjektivität gibt. Wir wollen zeigen, dass prim ist. Es gilt generell, dass ein Vielfaches von () ist genau dann, wenn ist, da ja die Teilbarkeitsbeziehung zu äquivalent ist. Aus mit , folgt nun und dann muss oder sein, so dass eines ein Vielfaches von ist. Also ist prim.

Mit dem gleichen Argument folgt, dass jedes Element mit assoziiert zu ist. Es liegt also ein Hauptidealbereich mit genau den Idealen und , , vor.


Aufgabe (2 (1+1) Punkte)

Betrachte die affine Nullstellenmenge

über .

  1. Bestimme die Punkte von und den projektiven Abschluss von .
  2. Zeige, dass der projektive Abschluss von nicht mit der projektiven Nullstellenmenge zur Homogenisierung von übereinstimmt.


Lösung

  1. Der einzige Punkt von ist der Nullpunkt . Da endliche Punktmengen im Projektiven abgeschlossen sind, stimmt dies mit dem projektiven Abschluss überein.
  2. Die Homogenisierung ist . Indem man setzt, kann man die unendlich fernen Punkte berechnen. Es ergibt sich die Bedingung

    und die zusätzliche Lösung .


Aufgabe (6 Punkte)

Bestimme die Schnittpunkte und die Schnittmultiplizitäten der beiden Kurven und in und ihrer projektiver Abschlüsse im


Lösung

Es ist

und somit muss in einem Schnittpunkt

sein. Dies ergibt für die -Koordinate die Möglichkeiten

Dies führt auf die Schnittpunkte

Wir berechnen die Schnittmultiplizität über die Dimension von

zu den verschiedenen maximalen Idealen. Bei geht es um den Ring

und ist eine -Basis dieses Ringes, die Schnittmultiplizität ist also . Bei ist

und

wobei die Koeffizientenpolynome im lokalen Ring Einheiten sind. Also ist die Schnittmultiplizität gleich . Ebenso ist bei die Schnittmultiplizität gleich . Bei ist

und nach dem gleichen Argument wie zuvor ist die Schnittmultiplizität gleich .

Um die Schnittpunkte im Projektiven zu bestimmen, betrachten wir die homogenen Polynome und und setzen . Dies ergibt den einzigen weiteren Schnittpunkt (in homogenen Koordinaten). Zur Berechnung der Schnittmultiplizität setzen wir und müssen den Ring

betrachten. Dessen -Dimension ist , was somit die Schnittmultiplizität in diesem Punkt ist.