Kurs:Algebraische Kurven (Osnabrück 2012)/Arbeitsblatt 15

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe

Sei ein kommutativer lokaler Ring. Zeige, dass zusammenhängend ist.


Aufgabe

Sei ein lokaler Ring mit Restekörper . Zeige, dass und genau dann die gleiche Charakteristik haben, wenn einen Körper enthält.


Aufgabe

Sei ein algebraisch abgeschlossener Körper und eine endlich erzeugte kommutative -Algebra. Es seien und zwei topologische Filter in mit . Zeige, dass es einen Ringhomomorphismus

gibt.


Aufgabe

Sei ein algebraisch abgeschlossener Körper und eine endlich erzeugte kommutative -Algebra. Sei ein Punkt. Zeige  (ohne Satz 15.12 zu verwenden), dass der Halm ein lokaler Ring ist.


Aufgabe

Sei ein kommutativer Ring und sei ein Primideal. Zeige, dass genau dann ein minimales Primideal ist, wenn die Reduktion der Lokalisierung ein Körper ist.


Aufgabe

Sei ein kommutativer Ring und sei ein maximales Ideal mit Lokalisierung . Es sei ein Ideal, dass unter der Lokalisierungsabbildung zum Kern gehört. Zeige, dass dann auch eine Lokalisierung von ist.


Aufgabe *

Sei ein Körper und eine integre, endlich erzeugte -Algebra mit Quotientenkörper . Sei . Zeige, dass die Menge

offen in ist (dabei bezeichnet den lokalen Ring im Punkt ).


Aufgabe *

Sei ein Körper und seien und integre, endlich erzeugte -Algebren. Es sei

ein -Algebrahomomorphismus und ein maximales Ideal in mit . Die Abbildung induziere einen Isomorphismus . Zeige, dass es dann auch ein , , gibt derart, dass ein Isomorphismus ist.


Aufgabe

Betrachte . Beschreibe eine offene Menge derart, dass der zu gehörende Ringhomomorphismus

nicht surjektiv ist.


Aufgabe

Zeige, dass der Ring reduziert ist.


Aufgabe

Sei eine kommutative -Algebra von endlichem Typ über einem algebraisch abgeschlossenen Körper. Sei eine offene Teilmenge und eine Funktion. Es sei eine offene Überdeckung mit der Eigenschaft, dass die Einschränkungen algebraische Funktionen sind. Zeige, dass dann selbst algebraisch ist.


Aufgabe

Sei ein Körper und betrachte das Achsenkreuz

Bestimme für jeden Punkt , ob der lokale Ring an ein Integritätsbereich ist oder nicht.


Aufgabe

Sei eine gerichtete Indexmenge und sei , , ein gerichtetes System von kommutativen Gruppen. Zeige, dass der Kolimes eine kommutative Gruppe ist.


Aufgabe

Sei eine gerichtete Indexmenge und sei , , ein gerichtetes System von Mengen. Es sei eine weitere Menge und zu jedem sei eine Abbildung

mit der Eigenschaft gegeben, dass ist für alle (wobei die Abbildungen des Systems bezeichnen). Beweise die universelle Eigenschaft des Kolimes, nämlich, dass es eine eindeutig bestimmte Abbildung

derart gibt, dass ist, wobei die natürlichen Abbildungen sind.

Zeige ferner, dass falls eine gerichtetes System von Gruppen und falls ebenfalls eine Gruppe ist und alle Gruppenhomomorphismen sind, dass dann auch ein Gruppenhomomorphismus ist.




Aufgaben zum Abgeben

Aufgabe * (6 Punkte)

Sei ein kommutativer Ring und sei ein Primideal. Dann ist der Restklassenring ein Integritätsbereich mit Quotientenkörper und ist ein lokaler Ring mit dem maximalen Ideal . Zeige, dass eine natürliche Isomorphie

vorliegt.

(Man nennt diesen Körper auch den Restekörper zu ).

Aufgabe (4 Punkte)

Sei ein Körper und sei eine -Algebra von endlichem Typ. Es seien endlich viele Punkte in . Zeige, dass der Umgebungsfilter dieser Punkte durch offene Mengen der Form erzeugt wird.

D.h. es ist zu zeigen, dass es zu offen stets ein gibt mit

Aufgabe (4 Punkte)

Sei eine integre -Algebra von endlichem Typ über einem algebraisch abgeschlossenen Körper . Sei ein Element im Quotientenkörper von . Zeige, dass

ein Ideal in ist. Zeige ferner, dass der (maximale) Definitionsbereich der algebraischen Funktion ist.


Aufgabe (5 Punkte)

Sei ein Körper, sei eine kommutative -Algebra von endlichem Typ und sei ein multiplikatives System in . Zu definieren wir

Zeige, dass ein topologischer Filter ist. Zeige ferner, dass es einen Ringhomomorphismus

gibt, der eine Isomorphie ist, falls algebraisch abgeschlossen und reduziert ist.


Aufgabe (5 Punkte)

Sei ein algebraisch abgeschlossener Körper und betrachte die affine Ebene zusammen mit der -Achse

Zeige, dass die folgende Menge ein saturiertes multiplikatives System ist.

Skizziere die Nullstellenmenge von einigen Polynomen, die oder die nicht zu gehören.

Sei der zugehörige topologische Filter. Vergleiche mit dem Umgebungsfilter zu und dem generischen Filter zu .


Aufgabe (4 Punkte)

Sei eine affine Varietät und seien endlich viele Punkte. Es sei der Umgebungsfilter dieser Punkte und der zugehörige Halm. Zeige, dass genau dann ein lokaler Ring ist, wenn ist.


Aufgabe (4 Punkte)

Sei ein kommutativer Ring und sei ein multiplikatives System. Auf betrachten wir folgende (partielle) Ordnung, und zwar sagen wir , falls eine Potenz von teilt. Zeige, dass die kommutativen Ringe

ein gerichtetes System bilden, und dass für den Kolimes

gilt.


Aufgabe (4 Punkte)

Es sei ein kommutativer Ring und seien Elemente, die das Einheitsideal erzeugen. Es sei vorausgesetzt, dass die Nenneraufnahmen für noethersch sind. Zeige, dass dann auch noethersch ist.




<< | Kurs:Algebraische Kurven (Osnabrück 2012) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)