Zum Inhalt springen

Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Vorlesung 55/kontrolle

Aus Wikiversity




Der Satz über die injektive Abbildung

Als ein weiteres Korollar aus dem Satz über die Umkehrabbildung besprechen wir die Situation, wo das totale Differential injektiv ist.



Es seien und endlichdimensionale reelle Vektorräume, sei offen und sei

eine stetig differenzierbare Abbildung. Es sei ein Punkt, in dem das totale Differential injektiv sei.

Dann gibt es eine offene Umgebung , , derart, dass injektiv ist.

Es sei und . Es sei das Bild des totalen Differentials . Nach Satz Anhang.1  (1) ist ein Untervektorraum der Dimension . Wir ergänzen eine Basis von durch zu einer Basis von und setzen . Wir betrachten die Abbildung

wobei links und rechts zwei -dimensionale Vektorräume stehen. Diese Abbildung kann man als die Hintereinanderschaltung

auffassen. Daher ist die Gesamtabbildung stetig differenzierbar und das totale Differential ist , wobei die lineare Einbettung des Unterraums ist. Dieses totale Differential ist surjektiv im Punkt , da sowohl als auch zum Bild gehören, und somit bijektiv. Wir können also den Satz über die Umkehrabbildung anwenden und erhalten offene Mengen und derart, dass ein Diffeomorphismus zwischen und ist. Dies können wir einschränken auf eine offene Menge der Form mit und . Dann ist die Abbildung

injektiv, da dies die Hintereinanderschaltung

mit ist.




Lipschitz-Bedingungen


Wir kehren zu Differentialgleichungen zurück und wollen den Satz von Picard-Lindelöf beweisen, einen wichtigen Existenz- und Eindeutigkeitssatz für Lösungen. Dafür wird die Voraussetzung wesentlich sein, dass das Vektorfeld lokal einer Lipschitz-Bedingung genügt.


Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Man sagt, dass das Vektorfeld einer Lipschitz-Bedingung genügt, wenn es eine reelle Zahl mit

für alle und gibt.

Die reelle Zahl nennt man auch eine Lipschitz-Konstante für das Vektorfeld .


Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Man sagt, dass das Vektorfeld lokal einer Lipschitz-Bedingung genügt, wenn es zu jedem Punkt eine offene Umgebung

derart gibt, dass das auf eingeschränkte Vektorfeld einer Lipschitz-Bedingung genügt.

Die folgende Aussage liefert ein wichtiges und leicht überprüfbares hinreichendes Kriterium, wann ein Vektorfeld lokal einer Lipschitz-Bedingung genügt.


Lemma  Lemma 55.4 ändern

Es sei ein reelles offenes Intervall, eine offene Menge und

ein Vektorfeld auf derart, dass die partiellen Ableitungen nach existieren und stetig sind.

Dann genügt lokal einer Lipschitz-Bedingung.

Sei

ein Punkt in und sei
eine offene Umgebung von innerhalb von derart, dass auch

ist. Dieses ist eine abgeschlossene Umgebung von und daher kompakt. Da die partiellen Ableitungen nach Voraussetzung stetig sind, gibt es nach Satz 36.12 eine gemeinsame Schranke mit

für alle . Daher gibt es für die Matrizen eine Schranke mit

Man kann daher zu jedem festen Zeitpunkt Lemma 51.3 anwenden und erhält für die Abschätzung



Abbildungsräume und Supremumsnorm

Wir stellen noch einige funktionalanalytische Hilfsmittel für den Beweis des Satzes von Picard-Lindelöf bereit. Wir verallgemeinern den Begriff der punktweisen (gleichmäßigen) Konvergenz von Funktionenfolgen auf metrische Räume.


Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge punktweise konvergiert, wenn für jedes die Folge

konvergiert.


Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen, die punktweise konvergiert. Dann nennt man die Abbildung

die Grenzabbildung der Abbildungsfolge.


Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge gleichmäßig konvergiert, wenn es eine Abbildung

derart gibt, dass es zu jedem ein gibt mit

Bei gleichmäßiger Konvergenz liegt insbesondere punktweise Konvergenz vor und ist die Grenzabbildung.


Lemma  Lemma 55.8 ändern

Es seien und

metrische Räume und es sei

eine Folge von stetigen Abbildungen, die gleichmäßig gegen die Abbildung konvergiert.

Dann ist stetig.

Es sei und vorgegeben. Aufgrund der gleichmäßigen Konvergenz gibt es ein mit für alle und alle . Wegen der Stetigkeit von in gibt es ein mit für alle mit . Für diese gilt somit


Wir erinnern an die Definition der Supremumsnorm.

Es sei eine Menge und

eine Funktion. Dann nennt man

das Supremum (oder die Supremumsnorm) von . Es ist eine nichtnegative reelle Zahl oder .


Diese Definition kann man direkt verallgemeinern, wenn die Werte der Abbildungen in einem euklidischen Vektorraum liegen. Es sei also eine Menge und sei ein euklidischer Vektorraum. In dieser Situation definiert man zu einer Abbildung

und nennt dies das Supremum (oder die Supremumsnorm) von (falls das Supremum nicht existiert, ist dies als zu interpretieren).

Wir setzen ; dies ist ein (i.A. unendlichdimensionaler) reeller Vektorraum. Die Supremumsnorm erfüllt die folgenden Eigenschaften (die geeignet zu interpretieren sind, falls auftritt).

  1. Es ist für alle .
  2. Es ist genau dann, wenn ist.
  3. Für und gilt
  4. Für gilt

Wenn ein metrischer Raum ist, so betrachtet man

Dieser ist ein reeller Untervektorraum von . Wenn nichtleer, abgeschlossen und beschränkt ist, so ist nach Satz 36.12 das Supremum von , , gleich dem Maximum, d.h. es gibt ein derart, dass für alle gilt. Daher ist in diesem Fall das Supremum stets eine reelle Zahl, und stimmt mit dem Maximum überein. Man spricht daher auch von der Maximumsnorm.



Satz  Satz 55.9 ändern

Es sei eine kompakte Teilmenge, es sei ein euklidischer Vektorraum und es sei der Vektorraum der stetigen Abbildungen von nach .

Dann ist , versehen mit der Maximumsnorm, ein vollständiger metrischer Raum.

Es sei

eine Cauchy-Folge von stetigen Abbildungen. Wir müssen zeigen, dass diese Folge gegen eine Grenzabbildung konvergiert, die ebenfalls stetig ist. Zu jedem gibt es ein derart, dass für die Beziehung

für alle } gilt. Daher ist für jedes die Folge eine Cauchy-Folge in und somit, wegen der Vollständigkeit von euklidischen Räumen, konvergent in . Wir nennen den Grenzwert dieser Folge , sodass sich insgesamt eine Grenzabbildung

ergibt, gegen die die Funktionenfolge punktweise konvergiert. Da eine Cauchy-Folge ist, gibt es zu jedem vorgegebenen stets ein derart, dass die Cauchy-Bedingung für alle gilt, konvergiert die Funktionenfolge sogar gleichmäßig gegen (und das bedeutet die Konvergenz in der Supremumsnorm). Aufgrund von Lemma 55.8 ist daher stetig und daher ist .