Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Vorlesung 23/kontrolle
In den folgenden Vorlesungen beschäftigen wir uns mit der Integrationstheorie, d.h. wir wollen den Flächeninhalt derjenigen Fläche, die durch einen Funktionsgraphen einer Funktion
und der -Achse begrenzt wird, systematisch studieren und berechnen. Zugleich ergibt sich ein direkter Zusammenhang zum Auffinden von Stammfunktionen, das sind Funktionen, deren Ableitung ist. Der Flächeninhalt ist kein unproblematischer Begriff, den wir erst im dritten Semester im Rahmen der Maßtheorie grundlegend behandeln werden. Dennoch handelt es sich um einen intuitiv leicht zugänglichen Begriff, von dem wir hier nur einige wenige naheliegende Grundtatsachen verwenden. Sie dienen hier auch nirgendwo der Argumentation, sondern lediglich der Motivation. Ausgangspunkt ist, dass der Flächeninhalt eines Rechtecks mit gegebenen Seitenlängen einfach das Produkt der beiden Seitenlängen ist, und dass der Flächeninhalt einer Fläche, die man mit Rechtecken „ausschöpfen“ kann, als der Limes der Summe der beteiligten Rechtecksinhalte erhalten werden kann. Beim Riemannschen Integral, das zumindest für stetige Funktionen eine befriedigende Theorie liefert, beschränkt man sich auf solche Rechtecke, die parallel zum Koordinatensystem liegen, deren Breite (Grundseite auf der -Achse) beliebig variieren darf und deren Höhe in Beziehung zu den Funktionswerten über der Grundseite steht. Dadurch werden die Funktionen durch sogenannte Treppenfunktionen approximiert.
- Treppenfunktionen
Diese Definition stellt also keine Bedingung an den Wert der Funktion an den Unterteilungspunkten. Das Intervall nennt man -tes Teilintervall, und heißt Länge dieses Teilintervalls. Wenn die Länge der Teilintervalle konstant ist, so spricht man von einer äquidistanten Unterteilung.
Es sei ein reelles Intervall mit den Grenzen und sei
eine Treppenfunktion zur Unterteilung und den Werten , . Dann heißt
das Treppenintegral von auf .
Das Treppenintegral wird auch mit bezeichnet. Bei einer äquidistanten Unterteilung mit der Teilintervalllänge ist das Treppenintegral gleich . Das Treppenintegral ist nicht von der gewählten Unterteilung abhängig, bezüglich der eine Treppenfunktion vorliegt (man kann also die Unterteilung verfeinern).
Es sei ein beschränktes Intervall und sei
eine Funktion. Dann heißt eine Treppenfunktion
eine obere Treppenfunktion zu , wenn für alle ist. Eine Treppenfunktion
heißt eine untere Treppenfunktion zu , wenn für alle ist.
Eine obere (untere) Treppenfunktion zu gibt es genau dann, wenn nach oben (nach unten) beschränkt ist.
Es sei ein beschränktes Intervall und sei
eine Funktion. Zu jeder oberen Treppenfunktion
von zur Unterteilung , , und den Werten , , heißt das Treppenintegral
ein oberes Treppenintegral (oder eine Obersumme) von auf .
Es sei ein beschränktes Intervall und sei
eine Funktion. Zu jeder unteren Treppenfunktion
von zur Unterteilung , , und den Werten , , heißt
ein unteres Treppenintegral (oder eine Untersumme) von auf .
Verschiedene obere (untere) Treppenfunktionen liefern natürlich verschiedene obere (und untere) Treppenintegralge.
Es sei ein beschränktes Intervall und sei
eine nach oben beschränkte Funktion. Dann heißt das Infimum von sämtlichen Treppenintegralen zu oberen Treppenfunktionen von das Oberintegral von .
Es sei ein beschränktes Intervall und sei
eine nach unten beschränkte Funktion. Dann heißt das Supremum von sämtlichen Treppenintegralen zu unteren Treppenfunktionen von das Unterintegral von .
Die Beschränkung nach unten stellt sicher, dass es überhaupt eine untere Treppenfunktion gibt und damit die Menge der unteren Treppenintegrale nicht leer ist. Unter dieser Bedingung allein muss nicht unbedingt die Menge der unteren Treppenintegrale ein Supremum besitzen. Für (beidseitig) beschränkte Funktionen existiert hingegen stets das Ober- und das Unterintegral. Bei einer gegebenen Unterteilung gibt es eine kleinste obere (größte untere) Treppenfunktion, die durch die Suprema (Infima) der Funktion auf den Teilintervallen festgelegt ist. Bei stetigen Funktionen auf abgeschlossenen Intervallen sind das Maxima bzw. Minima. Für das Integral muss man aber Treppenfunktionen zu sämtlichen Unterteilungen berücksichtigen.
- Riemann-integrierbare Funktionen
Es sei ein kompaktes Intervall und sei
eine Funktion. Dann heißt Riemann-integrierbar, wenn Ober- und Unterintegral von existieren und übereinstimmen.
Historisch korrekter ist es, von Darboux-integrierbar zu sprechen.
Es sei ein kompaktes Intervall. Zu einer Riemann-integrierbaren Funktion
heißt das Oberintegral (das nach Definition mit dem Unterintegral übereinstimmt) das bestimmte Integral von über . Es wird mit
bezeichnet.
Das Berechnen von solchen Integralen nennt man integrieren. Man sollte sich keine allzu großen Gedanken über das Symbol machen. Darin wird ausgedrückt, bezüglich welcher Variablen die Funktion zu integrieren ist. Es kommt dabei aber nicht auf den Namen der Variablen an, d.h. es ist
Es sei ein kompaktes Intervall und sei
eine Funktion. Es gebe eine Folge von unteren Treppenfunktionen mit und eine Folge von oberen Treppenfunktionen mit . Es sei vorausgesetzt, dass die beiden zugehörigen Folgen der Treppenintegrale konvergieren und dass ihr Grenzwert übereinstimmt.
Dann ist Riemann-integrierbar, und das bestimmte Integral ist gleich diesem Grenzwert, also
Beweis
Wir betrachten die Funktion
die bekanntlich in diesem Intervall streng wachsend ist. Für ein Teilintervall ist daher das Minimum und das Maximum der Funktion über diesem Teilintervall. Es sei eine positive natürliche Zahl. Wir unterteilen das Intervall in die gleichlangen Teilintervalle
der Länge . Das Treppenintegral zu der zugehörigen unteren Treppenfunktionen ist
(siehe Aufgabe 1.16 für die Formel für die Summe der Quadrate). Da die beiden Folgen und gegen konvergieren, ist der Limes für von diesen Treppenintegralen gleich . Das Treppenintegral zu der zugehörigen oberen Treppenfunktion ist
Der Limes davon ist wieder . Da beide Limiten übereinstimmen, müssen nach Lemma 23.10 überhaupt das Ober- und das Unterintegral übereinstimmen, sodass die Funktion Riemann-integrierbar ist und das bestimmte Integral
ist.
Es sei ein kompaktes Intervall und sei
eine Funktion. Dann sind folgende Aussagen äquivalent.
- Die Funktion ist Riemann-integrierbar.
- Es gibt eine Unterteilung derart, dass die einzelnen Einschränkungen Riemann-integrierbar sind.
- Für jede Unterteilung sind die Einschränkungen Riemann-integrierbar.
In dieser Situation gilt
Beweis
Es sei ein reelles Intervall und sei
eine Funktion. Dann heißt Riemann-integrierbar, wenn die Einschränkung von auf jedes kompakte Intervall Riemann-integrierbar ist.
Aufgrund des obigen Lemmas stimmen für ein kompaktes Intervall die beiden Definitionen überein. Die Integrierbarkeit einer Funktion bedeutet nicht, dass eine Bedeutung hat bzw. existieren muss.
- Riemann-Integrierbarkeit stetiger Funktionen
Wir können annehmen, dass das Intervall kompakt ist, sagen wir . Die stetige Funktion ist auf diesem kompakten Intervall beschränkt nach Korollar 13.11. Daher gibt es obere und untere Treppenfunktionen und daher existieren Oberintegral und Unterintegral. Wir müssen zeigen, dass sie übereinstimmen. Dazu genügt es, zu einem gegebenen eine untere und eine obere Treppenfunktion für anzugeben derart, dass die Differenz ihrer Treppenintegrale ist. Nach Lemma 14.2 ist gleichmäßig stetig. Daher gibt es zu ein derart, dass für alle mit die Abschätzung gilt. Es sei nun so, dass ist, und betrachten wir die Unterteilung des Intervalls mit den Punkten . Auf den Teilintervallen , , ist der Abstand zwischen dem Maximum
und dem Minimum
kleiner/gleich . Die zu diesen Werten gehörigen Treppenfunktionen, also
und
sind dann eine obere bzw. untere Treppenfunktion zu . Die Differenz zwischen den zugehörigen Ober- und Untersummen ist dann
Diese Aussage gilt auch für stückweise stetige Funktionen.
Wenn man Aussagen beweist, bei denen auf Unterteilungen eines Intervalls Bezug genommen wird, so ist es häufig sinnvoll, feinere Unterteilungen einzuführen. Insbesondere ersetzt man häufig zwei verschiedene Unterteilungen durch eine gemeinsame Verfeinerung.
Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Dann gelten folgende Aussagen.
- Ist für alle , so ist .
- Ist für alle , so ist .
- Die Summe ist Riemann-integrierbar und es ist .
- Für ist .
- Die Funktionen und sind Riemann-integrierbar.
- Die Funktion ist Riemann-integrierbar.
- Das Produkt ist Riemann-integrierbar.
Für (1) bis (4) siehe Aufgabe 23.21. (5). Wir betrachten die Aussage für das Maximum. Wir müssen zeigen, dass es zu jedem eine obere und eine untere Treppenfunktion derart gibt, dass die Differenz der beiden Treppenintegrale ist. Es sei also ein vorgegeben. Aufgrund der Riemann-Integrierbarkeit gibt es Treppenfunktionen
und
Wir können annehmen, dass diesen Treppenfunktionen die gleiche Unterteilung zugrunde liegt. Es sei , die Länge des -ten Teilintervalls und es sei
Dann gilt
Wir setzen
Dies ist offenbar eine untere bzw. obere Treppenfunktionen für . Wir betrachten ein Teilintervall der gegebenen Unterteilung. Wenn dort
gilt, so ist dort
gilt, so ist dort ebenfalls
Damit ist die Differenz der Treppenintegrale .
(6) folgt direkt aus (5). Für (7) siehe Aufgabe 23.29.
Es sei
eine gleichmäßig konvergente Folge von stetigen Funktionen mit der Grenzfunktion
Dann gilt die Beziehung
Da die Grenzfunktion nach Lemma 16.4 stetig ist, existiert das bestimmte Integral rechts nach Satz 23.14. Für jedes gibt es ein mit
für alle und alle . Daher gilt für diese die Abschätzung unter Verwendung von Lemma 23.15 (3) und Lemma 23.15 (6)