Zum Inhalt springen

Kurs:Analysis 3/20/Klausur mit Lösungen

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12
Punkte 4 4 4 5 7 5 7 3 2 6 7 10 64




Aufgabe (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine -Algebra auf einer Menge .
  2. Das Borel-Lebesgue-Maß auf dem .
  3. Der Limes superior zu einer reellen Folge .
  4. Der Kegel zu einer Basismenge und einem Punkt .
  5. Zwei in einem Punkt einer differenzierbaren Mannigfaltigkeit tangential äquivalente differenzierbare Kurven

    (dabei sei ein offenes reelles Intervall und ).

  6. Ein regulärer Punkt zu einer differenzierbaren Abbildung

    zwischen differenzierbaren Mannigfaltigkeiten und .

  7. Ein orientierungstreuer Kartenwechsel auf einer differenzierbaren Mannigfaltigkeit .
  8. Die äußere Ableitung einer stetig differenzierbaren - Differentialform auf einer offenen Menge .


Lösung

  1. Ein Teilmengensystem auf heißt -Algebra, wenn folgende Bedingungen erfüllt sind.
    1. Es ist .
    2. Mit gehört auch das Komplement zu .
    3. Für jede abzählbare Familie , , ist auch
  2. Das Borel-Lebesgue-Maß auf ist das (eindeutig bestimmte) Maß auf , das für jeden Quader der Form den Wert besitzt.
  3. Es sei die Menge der Häufungspunkte der Folge . Dann setzt man

    und nennt diese Zahl (eventuell ) den Limes superior der Folge.

  4. Der Kegel zur Basis mit der Spitze ist definiert durch
  5. Die beiden Kurven und heißen tangential äquivalent in , wenn es eine offene Umgebung und eine Karte

    mit derart gibt, dass

    gilt.
  6. Der Punkt heißt regulär für , wenn die Tangentialabbildung

    im Punkt maximalen Rang besitzt.

  7. Es seien

    und

    orientierte Karten von . Der zugehörige Kartenwechsel

    heißt orientierungstreu, wenn für jeden Punkt das totale Differential

    orientierungstreu ist.

  8. Die Form besitzt auf eine Darstellung

    mit stetig differenzierbaren Funktionen

    Dann ist die äußere Ableitung die -Form


Aufgabe (4 Punkte)

Formuliere die folgenden Sätze.

  1. Der Eindeutigkeitssatz für Maße.
  2. Das Cavalieri-Prinzip für eine messbare Teilmenge zu - endlichen Maßräumen und .
  3. Die Transformationsformel für Integrale zu einem -Diffeomorphismus

    wobei und

    offene Teilmengen des sind.
  4. Der Satz von Stokes für Mannigfaltigkeiten mit Rand.


Lösung

  1. Es sei ein Messraum und es sei ein durchschnittsstabiles Erzeugendensystem für . Es seien und zwei Maße auf , die auf übereinstimmen. Es gebe eine Ausschöpfung mit und mit . Dann ist
  2. Für jede messbare Teilmenge gilt die Beziehung
  3. Für eine messbare Funktion

    ist genau dann integrierbar auf , wenn die Hintereinanderschaltung auf integrierbar ist. In diesem Fall gilt

    wobei die Determinante des totalen Differentials bezeichnet.
  4. Es sei eine - dimensionale orientierte differenzierbare Mannigfaltigkeit mit Rand und mit abzählbarer Basis der Topologie, und es sei eine stetig differenzierbare - Differentialform mit kompaktem Träger auf . Dann ist


Aufgabe (4 (2+2) Punkte)

Eine Bratpfanne hat einen Durchmesser von cm und wird mit Öl und mit kreisrunden Bratkartoffeln überschneidungsfrei bedeckt, die alle einen Durchmesser von cm und eine Höhe von cm haben. Das Öl bildet unterhalb der Bratkartoffeln einen dünnen Ölfilm von mm Höhe und erreicht in den Zwischenräumen eine Höhe von mm.

a) Wie viel Öl befindet sich in der Pfanne (rechne mit ; Einheit nicht vergessen)?

b) Welche maßtheoretischen Gesetzmäßigkeiten wurden bei der Berechnung von a) verwendet?


Lösung

a) Die Grundfläche der Pfanne ist und die Grundfläche einer Bratkartoffel ist (in Quadratzentimetern). Daher werden Quadratzentimeter von den Kartoffeln bedeckt und Quadratzentimeter nicht. Daher ist die Ölmenge in Kubikzentimetern

In der Pfanne befindet sich also Kubikzentimeter Öl.

b) Es wurde dabei die Formel für die Kreisfläche (für die Grundfläche der Pfanne und der Kartoffeln), die Produktformel für das Maß (bei der Berechnung der Ölmenge aus Grundfläche und Höhe) einer Produktmenge und das Additivitätsprinzip für disjunkte Teilmengen (bei der Zerlegung in den bedeckten und den unbedeckten Teil) angewendet.


Aufgabe (5 (2+3) Punkte)

Es sei ein Messraum und und seien Maße darauf.

a) Ist die durch

für definierte Abbildung ein Maß?

b) Ist die durch

für definierte Abbildung ein Maß?


Lösung

a) Die Summe ist ein Maß. Für eine disjunkte abzählbare Vereinigung gilt

wobei im vorletzten Schritt der große Umordnungssatz verwendet wurde.

b) Durch das Maximum ergibt sich im Allgemeinen kein Maß. Dazu sei beispielsweise

eine zweielementige Menge und sei das in konzentrierte Dirac-Maß und sei das in konzentrierte Dirac-Maß. Dann ist

und damit ist auch das Maximum davon . Ferner ist

und ebenso . Würde ein Maß vorliegen, so müsste also

sein.


Aufgabe (7 (2+3+2) Punkte)

Es sei eine beschränkte reelle Folge,

eine stetige Abbildung und die Bildfolge. Es sei die Menge der Häufungspunkte von und die Menge der Häufungspunkte von .

a) Zeige .

b) Zeige

c) Zeige, dass die Abschätzung aus Teil b) echt sein kann.


Lösung

a) Es sei ein Häufungspunkt von . Dann gibt es eine gegen konvergente Teilfolge. Nach dem Folgenkriterium für die Stetigkeit konvergiert die Bildfolge dieser Teilfolge gegen , sodass ein Häufungspunkt der Bildfolge ist.

b) Zu einer beschränkten Menge unter einer stetigen Abbildung

ist stets

da es eine Folge in gibt, die gegen das Supremum von konvergiert. Die Bildfolge davon konvergiert gegen . Wenn speziell die Menge der Häufungspunkte ist, so ergibt sich daraus und aus Teil a) die Abschätzung

c) Wir betrachten die Folge , die für gerade Indizes den Wert und für ungerade den Wert besitzt. Die Häufungspunkte sind also , der Limes superior davon ist . Es sei . Die Bildfolge schwankt zwischen und und somit ist der Limes superior der Bildfolge gleich . Das ist echt größer als .


Aufgabe (5 Punkte)

Die rechteckige Grundseite (Unterseite) eines Bootes (unter Wasser) habe die Breite und die Länge , die (ebenfalls rechteckige) Deckseite (Oberseite) habe die Breite und die Länge , wobei die Seiten parallel zueinander seien und den Abstand besitzen. Die vier übrigen Seiten seien ebene Verbindungen zwischen Ober- und Unterseite. Das Boot wiegt mit Besatzung, aber ohne Ladung . Der Tiefgang des Bootes soll maximal betragen. Mit welcher Masse kann das Boot maximal beladen werden?


Lösung

Wir berechnen zuerst die Länge und die Breite der Querschnittsebene des Bootes zu einer Höhe über der Grundseite. Für die Länge gilt

da die Abhängigkeit von der Höhe linear ist. Für die Breite gilt

Daher ist der Flächeninhalt der Querschnittsfläche gleich

Nach dem Cavalieri-Prinzip ist daher das Volumen (in Kubikmetern) des Bootes von der Grundseite bis zur Höhe gleich

Für ergibt sich

in Kubikmetern. Der Auftrieb ist gleich dem Gewicht des verdrängten Wasservolumens. Also darf das Schiff maximal Tonnen wiegen, sodass es eine Ladung von Tonnen befördern kann.


Aufgabe (7 Punkte)

Beweise das Cavalieri-Prinzip für eine messbare Teilmenge .


Lösung

Wir zeigen zuerst, dass die Zuordnung

ein Maß auf der Produkt-- Algebra ist. Es sei dazu eine abzählbare Zerlegung in paarweise disjunkte messbare Teilmengen. Nach Aufgabe ***** ist

sodass die - Additivität erfüllt ist.
Für einen Quader ist


Aufgrund des Eindeutigkeitssatzes für das Produktmaß muss daher das durch das Integral definierte Maß mit dem Produktmaß übereinstimmen.


Aufgabe (3 Punkte)

Man gebe für jeden Tangentialvektor mit in einem Punkt auf der Einheitssphäre einen differenzierbaren Repräsentanten

mit an.


Lösung

Es sei und . Beide Vektoren sind normiert und stehen senkrecht aufeinander, da die Tangentialebene an die Sphäre senkrecht auf dem Ortsvektor steht. Wir betrachten den Weg

mit

Es ist

der Weg verläuft also ganz auf der Sphäre. Ferner ist

und


Aufgabe (2 Punkte)

Man gebe ein Beispiel für differenzierbare Mannigfaltigkeiten und mit und differenzierbare Abbildungen und derart, dass und gilt.


Lösung

Wir wählen und und

und

Dann ist

und


Aufgabe (6 Punkte)

Es sei eine kompakte topologische -dimensionale Mannigfaltigkeit, . Zeige, dass es eine beschränkte offene Teilmenge und eine stetige surjektive Abbildung

gibt.


Lösung

Zu jedem Punkt wählen wir eine offene Kartenumgebung mit einer Karte

mit . Dabei können wir annehmen, indem wir zu einer Ballumgebung von und dessen Urbild übergehen, dass die offene Bälle sind, deren Radius maximal ist. Die , , überdecken die Mannigfaltigkeit. Wegen der Kompaktheit von gibt es endlich viele Punkte derart, dass auch , , die Mannigfaltigkeit überdecken. Wir platzieren die offenen Bälle in („einem neuen“) , und zwar mit den Mittelpunkten

Wegen der Radiusbedingung sind diese Bälle zueinander disjunkt. Wir betrachten die beschränkte offene Menge . Die Kartenabbildungen liefern stetige Abbildungen

Wegen der Disjunktheit ergibt sich daraus durch , falls ist, eine stetige Abbildung

Wegen der Überdeckungseigenschaft ist diese surjektiv.


Aufgabe (7 (2+3+2) Punkte)

Wir betrachten die differenzierbaren Abbildungen

und

und die Differentialform

auf dem .

a) Berechne die zurückgezogene Differentialform auf dem .

b) Berechne das Wegintegral zur Differentialform zum Weg .

c) Berechne (ohne Bezug auf b)) das Wegintegral zur Differentialform zum Weg .


Lösung

a) Die zurückgezogene Differentialform ist

b) Das Wegintegral ist

c) Der verknüpfte Weg ist

Somit ist


Aufgabe (10 Punkte)

Beweise die Quaderversion des Satzes von Stokes.


Lösung

Da beide Seiten dieser Gleichung linear in sind, können wir annehmen, dass die Gestalt

mit einer in einer offenen Umgebung von definierten stetig differenzierbaren Funktion besitzt. Die Integrale sind links und rechts Lebesgue-Integrale zu stetigen Funktionen auf Teilmengen des bzw. . Daher können wir auf beiden Seiten zum topologischen Abschluss übergehen, da dadurch die in Frage stehenden Integrationsbereiche nur um eine Nullmenge verändert werden, sodass dies die Integrale nicht ändert.

Wir schreiben den abgeschlossenen Quader als

Wir wenden Fakt ***** auf jede Seite ausgenommen und an und erhalten darauf

da auf diesen Seiten jeweils eine der Variablen konstant ist. Aufgrund des Satzes von Fubini und des Hauptsatzes der Infinitesimalrechnung (angewendet auf jedes fixierte ) gilt