Kurs:Invariantentheorie (Osnabrück 2012-2013)/Vorlesung 16

Aus Wikiversity
Zur Navigation springen Zur Suche springen

In dieser Vorlesung führen wir eine wichtige Konstruktion für Moduln ein, das sogenannte Tensorprodukt. Die Eigenschaften des konstruierten Objektes sind dabei wichtiger als die Konstruktion selbst.



Das Tensorprodukt von Moduln

Definition  

Es sei ein kommutativer Ring und seien -Moduln. Eine Abbildung

heißt -multilinear, wenn für jedes und jedes -Tupel (mit ) die induzierte Abbildung

-linear ist.

Bei spricht man von bilinear.


Definition  

Es sei ein kommutativer Ring und seien -Moduln. Es sei der von sämtlichen Symbolen (mit ) erzeugte freie -Modul. Es sei der von allen Elementen der Form

  1. ,
  2. ,

erzeugte -Untermodul. Dann nennt man den Restklassenmodul das Tensorprodukt der , . Es wird mit

bezeichnet.

Die Bilder von in bezeichnet man wieder mit . Jedes Element aus besitzt eine

(nicht eindeutige) Darstellung als

(mit und ). Insbesondere bilden die (zerlegbaren Tensoren) ein -Modulerzeugendensystem des Tensorprodukts. Die definierenden Erzeuger des Untermoduls werden zu Gleichungen im Tensorprodukt, sie drücken die Multilinearität aus. Insbesondere gilt

für beliebige .

Wichtiger als die Konstruktion des Tensorprodukts ist die folgende universelle Eigenschaft.



Lemma  

Es sei ein kommutativer Ring und seien -Moduln.

  1. Die Abbildung

    ist -multilinear.

  2. Es sei ein weiterer -Modul und

    eine multilineare Abbildung. Dann gibt es eine eindeutig bestimmte -lineare Abbildung

    mit .

Beweis  

(1) folgt unmittelbar aus der Definition des Tensorprodukts. (2). Da die ein -Modulerzeugendensystem von sind und

gelten muss, kann es maximal eine solche lineare Abbildung geben. Zur Existenz betrachten wir den freien Modul aus der Konstruktion des Tensorprodukts. Die Symbole bilden eine Basis von , daher legt die Vorschrift eine lineare Abbildung

fest. Wegen der Multilinearität von wird der Untermodul auf abgebildet. Daher induziert diese Abbildung nach dem Faktorisierungssatz einen -Modulhomomorphismus


Das Tensorprodukt ist durch diese universelle Eigenschaft bis auf (eindeutige) Isomorphie festgelegt. Wenn es also einen -Modul zusammen mit einer multilinearen Abbildung derart gibt, dass jede multilineare Abbildung in einen -Modul eindeutig über mit einer linearer Abbildung von nach faktorisiert, so gibt es einen eindeutig bestimmten Isomorphismus zwischen und dem Tensorprodukt . Daher ist diese universelle Eigenschaft wichtiger als die oben durchgeführte Konstruktion des Tensorprodukts.



Proposition

Es sei ein kommutativer Ring und seien -Moduln. Dann gelten folgende Aussagen.

  1. Es ist
  2. Es ist
  3. Es ist

Beweis

Siehe Aufgabe 16.2.




Proposition  

Es sei ein kommutativer Ring und seien -Moduln. Dann gelten folgende Aussagen.

  1. Zu einem -Modulhomomorphismus gibt es einen natürlichen -Modulhomomorphismus .
  2. Zu einer exakten Sequenz

    von -Moduln ist auch

    exakt.

Beweis  

(1). Die Abbildung

ist -bilinear und induziert daher einen -Modulhomomorphismus

(2). Die Surjektivität der Abbildung

ist klar, da die ein -Modulerzeugendensystem von bilden und diese im Bild der Abbildung liegen. Für die Exaktheit an der anderen Stelle müssen wir die Isomorphie

nachweisen. Dazu beweisen wir für diesen Restklassenmodul, dass er die universelle Eigenschaft des Tensorprodukts erfüllt. Es sei also

eine -multilineare Abbildung in einen -Modul . Somit liegt auch eine eindeutige multilineare Abbildung

und damit eine -lineare Abbildung

vor. Wegen

ist

und daher gibt es eine eindeutige Faktorisierung



Ringwechsel

Wir betrachten jetzt den Fall des Tensorproduktes, wenn über ein -Modul und eine kommutative -Algebra vorliegt.


Definition  

Zu einem -Modul und einem Ringhomomorphismus

zwischen kommutativen Ringen nennt man den durch Ringwechsel gewonnenen -Modul.

Beispiel  

Es sei ein reeller Vektorraum. Die Tensorierung mit der -Algebra , also

nennt man die Komplexifizierung von . Wenn die Dimension besitzt, so besitzt als komplexer Vektorraum ebenfalls die Dimension . Wenn man als reellen Vektorraum betrachtet, so besitzt er die reelle Dimension .




Proposition  

Es sei ein kommutativer Ring, ein -Modul und ein Ringhomomorphismus. Dann gelten folgende Aussagen.

  1. Das Tensorprodukt ist ein -Modul.
  2. Es gibt einen kanonischen -Modulhomomorphismus

    Bei ist dies ein Isomorphismus.

  3. Zu einem -Modulhomomorphismus ist die induzierte Abbildung

    ein -Modulhomomorphismus.

  4. Zu ist
  5. Zu einem weiteren Ringhomomorphismus ist

    (eine Isomorphie von -Moduln).

Beweis  

(1). Die Multiplikation

ist -bilinear und führt nach Lemma 16.3 zu einer -linearen Abbildung

Dies induziert nach Proposition 16.4  (2) und nach Proposition 16.5 einen -Modulhomomorphismus

Dies ergibt eine wohldefinierte Skalarmultiplikation

die explizit durch[1]

gegeben ist. Aus dieser Beschreibung folgen direkt die Eigenschaften einer Skalarmultiplikation.
(2). Die -Homomorphie folgt direkt aus der Bilinearität des Tensorprodukts. Bei ist die Abbildung surjektiv. Die Skalarmultiplikation induziert eine -lineare Abbildung

Die Verknüpfung der kanonischen Abbildung mit dieser Abbildung ist die Identität auf , so dass die erste Abbildung auch injektiv ist.
(3) folgt aus der expliziten Beschreibung in (1).
(4) folgt aus Proposition 16.4  (3).
(5). Nach Teil (2) haben wir einerseits eine -lineare Abbildung . Dies führt zu einer -multilinearen Abbildung

die eine -lineare Abbildung

induziert. Andererseits haben wir eine -lineare Abbildung

Rechts steht ein -Modul, daher kann man die Skalarmultiplikation als eine -multilineare Abbildung

auffassen, die ihrerseits zu einer -linearen Abbildung

führt. Diese beiden Abbildungen sind invers zueinander, was man auf den zerlegbaren Tensoren überprüfen kann. Daran sieht man auch, dass sich die -Multiplikationen entsprechen.



Proposition

Es sei ein kommutativer Ring und ein -Modul. Dann gelten folgende Aussagen.

  1. Zu einem [[{{:MDLUL/{{Expansion depth limit exceeded|dient dazu, einen bestimmten mathematischen Begriff, wie er in einem mathematischen Text vorkommt, auf die gemeinte Definition umzuleiten, um dadurch einen funktionierenden Link zu erzeugen.}}Start= {{Expansion depth limit exceeded|Siehe=
    MDLUL/
    Ziel=[[{{Expansion depth limit exceeded|opt=Ziel}}]]|Ziel=[[]]}}|opt=Ziel}}|multiplikativen System]] ist .
  2. Zu einem Ideal ist .

Beweis

Siehe Aufgabe 16.4.

Beispiel  

Zu einem Integritätsbereich mit Quotientenkörper und einem -Modul erhält man im Tensorprodukt einen Modul über dem Quotientenkörper , also einen Vektorraum. Dieser Vektorraum trägt häufig schon wesentliche Informationen über den Modul. Seine Dimension nennt man auch den Rang des Moduls.



Beispiel  

Zu jeder kommutativen Gruppe und jedem kommutativen Ring enthält man im Tensorprodukt einen -Modul. Wenn endlich erzeugt und die Zerlegung (vergleiche den Hauptsatz über endlich erzeugte kommutative Gruppen)

vorliegt, so ist der tensorierte Modul die direkte Summe aus und den

wobei deren Gestalt von der Charakteristik des Ringes abhängt.



Beispiel  

Es sei eine Gruppe, die auf einem kommutativen Ring als Gruppe von Ringautomorphismen operiere, und es sei der Invariantenring. Dann gehört zu jedem -Modul das Tensorprodukt . Auf diesem -Modul operiert die Gruppe in natürlicher und mit der Operation auf verträglichen Weise, siehe Aufgabe 16.10.




Fußnoten
  1. Wenn man die Skalarmultiplikation direkt über diese Formel definieren möchte hat man das Problem der Wohldefiniertheit.


<< | Kurs:Invariantentheorie (Osnabrück 2012-2013) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)