Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Vorlesung 34

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Differenzierbare Kurven
Eine Animation des Graphen der trigonometrischen Parametrisierung des Einheitskreises. Die grünen Punkte sind Punkte des Graphen.


Es sei ein reelles Intervall, ein endlichdimensionaler reeller Vektorraum und

eine Abbildung. Eine solche Abbildung nennen wir auch eine Kurve oder einen Weg in . Häufig stellt man sich dabei als ein Zeitintervall und die Abbildung als einen Bewegungsprozess im Raum vor. Jedem Zeitpunkt wird also ein Ortspunkt zugeordnet. Es gibt mehrere Möglichkeiten, sich eine solche Abbildung zu veranschaulichen. Bei eindimensionalem , also , ist der Graph die übliche Darstellungsweise. Einen Graphen gibt es bekanntlich zu jeder Abbildung. Bei ist der Graph eine Teilmenge von . Häufig skizziert man bei einer Kurve bei oder nur das Bild (man spricht auch von der Bahn oder der Spur der Kurve) der Kurve. Man beachte aber, dass das Bild nur eine Teilinformation der Abbildung aufzeigt.

Bei einem Bewegungsprozess interessiert man sich natürlich für die „Geschwindigkeit“ zu einem bestimmten Zeitpunkt. Dabei versteht man unter Geschwindigkeit nicht nur deren Betrag (oder Norm), sondern auch deren Richtung (die Sprechweisen sind uneinheitlich).

Eine gleichmäßige Bewegung auf einem Kreis mit Mittelpunkt und Radius , bei der eine volle Kreisbewegung die Zeit benötigt, die zum Zeitpunkt im Punkt startet und gegen den Uhrzeigersinn verläuft, wird durch

beschrieben. Der Geschwindigkeitsvektor der Kreisbewegung ist zu jedem Zeitpunkt tangential an den Ortspunkt auf dem Kreis (und steht senkrecht zum Ortsvektor). Die Norm der Geschwindigkeit ist bei einer Kreisbewegung konstant, aber die Richtung ändert sich kontinuierlich.

Die Vorstellung der Momentangeschwindigkeit wird durch den Begriff der differenzierbaren Kurve und ihrer Ableitung präzisiert, der eine direkte Verallgemeinerung von differenzierbaren Funktionen ist. Die Idee ist wieder, zu zwei Zeitpunkten den Durchschnittsgeschwindigkeitsvektor (die wir den Differenzenquotienten nennen)

zu betrachten und davon den Limes für zu bestimmen.

Um einen Limes bilden zu können, brauchen wir, wie schon im Eindimensionalen, eine Metrik (eine Abstandsfunktion) auf . Wir werden daher euklidische Vektorräume betrachten, also reelle endlichdimensionale Vektorräume, für die ein Skalarprodukt erklärt ist. Ein Skalarprodukt auf definiert über

eine Norm und über

eine Metrik. Für einen Vektor , der bezüglich einer Orthonormalbasis durch die Koordinaten

gegeben ist, lautet die Formel für die Norm

Da es auf jedem endlichdimensionalen Vektorraum eine Basis und damit eine dadurch induzierte bijektive lineare Abbildung

gibt, gibt es auch auf jedem reellen endlichdimensionalen Vektorraum ein Skalarprodukt und damit eine euklidische Metrik. Diese hängt jedoch von der gewählten Basis ab. Allerdings hängen die offenen Mengen,[1] der Konvergenzbegriff und Grenzwerteigenschaften nicht von einer solchen Wahl ab, wie das folgende Lemma zeigt.


Lemma  

Es sei ein reeller endlichdimensionaler Vektorraum. Es seien zwei Skalarprodukte und auf gegeben.

Dann stimmen die über die zugehörigen Normen und definierten Topologien überein, d.h. eine Teilmenge ist genau dann offen bezüglich der einen Metrik, wenn sie offen bezüglich der anderen Metrik ist.

Beweis  


Für uns bedeutet das, dass die im Folgenden zu entwickelnden Differenzierbarkeitsbegriffe nicht vom gewählten Skalarprodukt abhängen. Mit etwas mehr Aufwand kann man auch zeigen, dass eine beliebige (nicht notwendigerweise euklidische) Norm auf einem reellen endlichdimensionalen Vektorraum ebenfalls die gleiche Topologie definiert, und man genauso gut mit einer beliebigen Norm arbeiten könnte. Zunächst müssen wir den Grenzwertbegriff für Abbildungen zwischen metrischen Räumen erweitern.


Definition  

Sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei

eine Abbildung in einen weiteren metrischen Raum . Dann heißt der Grenzwert (oder Limes) von in , wenn es für jedes ein gibt mit der folgenden Eigenschaft: Für jedes ist . In diesem Fall schreibt man

Eine alternative Bedingung ist, dass für jede Folge aus , die gegen konvergiert, die Bildfolge gegen konvergiert.

Diese Definition werden wir hauptsächlich in der Situation ein reelles Intervall, , , ein euklidischer Vektorraum und den Differenzenquotienten

anwenden. Dieser ist für nicht definiert, wir suchen aber dennoch einen sinnvollen Wert für ihn.


Definition  

Es sei ein reelles Intervall, ein euklidischer Vektorraum und

eine Abbildung. Dann heißt in differenzierbar, wenn der Limes

existiert. Dieser Limes heißt dann die Ableitung von in und wird mit

bezeichnet.

Die Ableitung ist selbst wieder ein Vektor in . Statt Ableitung spricht man auch vom Differentialquotienten in einem (Zeit)-Punkt . Bei versteht man unter der Tangente an zum Zeitpunkt die durch

gegebene Gerade.

Definition  

Es sei ein reelles Intervall, ein euklidischer Vektorraum und

eine Abbildung. Dann heißt differenzierbar, wenn in jedem Punkt differenzierbar ist. Die Abbildung

heißt dann die Ableitung von .

Die Ableitung einer differenzierbaren Kurve ist damit selbst wieder eine Kurve. Wenn die Ableitung stetig ist, so nennt man die Kurve stetig differenzierbar. Wenn die Ableitung selbst differenzierbar ist, so nennt man die Ableitung der Ableitung die zweite Ableitung der Ausgangskurve.

Das folgende Lemma zeigt, dass dieser Differenzierbarkeitsbegriff nichts wesentlich neues ist, da er auf die Differenzierbarkeit von Funktionen in einer Variablen zurückgeführt werden kann.



Lemma  

Es sei ein reelles Intervall, ein euklidischer Vektorraum und

eine Abbildung. Es sei eine Basis von und es seien

die zugehörigen Komponentenfunktionen von . Es sei .

Dann ist genau dann differenzierbar in , wenn sämtliche Funktionen in differenzierbar sind.

In diesem Fall gilt

Beweis  

Sei und , . Es ist

Nach Aufgabe 34.5 existiert der Limes links für genau dann, wenn der entsprechende Limes rechts komponentenweise existiert.

Die vorstehende Aussage wird hauptsächlich für die Standardbasis des angewendet.


Beispiel  

Die Kurve

ist in jedem Punkt differenzierbar, und zwar ist



Beispiel  

Die trigonometrische Parametrisierung des Einheitskreises

besitzt nach Lemma 34.5 und nach Satz 21.5 die Ableitung

Wegen

steht der Geschwindigkeitsvektor stets senkrecht auf dem Ortsvektor.




Lemma

Es sei ein reelles Intervall und ein euklidischer Vektorraum. Es seien

zwei in differenzierbare Kurven und es sei

eine in differenzierbare Funktion. Dann gelten folgende Aussagen.

  1. Die Summe
    ist in differenzierbar mit
  2. Das Produkt

    ist differenzierbar in mit

    Insbesondere ist für auch differenzierbar in mit

  3. Wenn nullstellenfrei ist, so ist auch die Quotientenfunktion

    in differenzierbar mit

Beweis

Siehe Aufgabe 34.4.

Man kann natürlich zwei Abbildungen nicht miteinander multiplizieren, so dass in der obigen Produktregel eine differenzierbare Kurve und eine differenzierbare Funktion auftreten. Ebenso muss die Kettenregel mit Bedacht formuliert werden. Später werden wir noch eine allgemeinere Kettenregel kennenlernen.



Lemma  

Es seien und zwei reelle Intervalle, es sei

eine in differenzierbare Funktion und es sei

eine in differenzierbare Kurve in einen euklidischen Vektorraum .

Dann ist auch die zusammengesetzte Kurve

in differenzierbar und es gilt

Beweis  

Es seien die Komponentenfunktionen von bezüglich einer Basis von . Nach der Kettenregel in einer Variablen gilt

für jedes . Dies ist wegen Lemma 34.5 die Behauptung.


In der vorstehenden Situation sollte man sich als eine Umparametrisierung der Zeit vorstellen. Die Bahn der Kurve bleibt erhalten, es ändert sich aber die Geschwindigkeit und eventuell die Richtung, mit der die Bahn durchlaufen wird. Wenn die Negation ist, so wird die Kurve mit umgekehrter Zeitrichtung durchlaufen. Die Aussage besagt in diesem Fall, dass die Ableitung der umgekehrten Kurve negiert werden muss.



Lemma  

Es sei ein reelles Intervall, und seien euklidische Vektorräume und es sei

eine differenzierbare Kurve. Es sei

eine lineare Abbildung.

Dann ist auch die zusammengesetzte Abbildung

differenzierbar und es gilt

Beweis  

Sei fixiert und sei , . Wegen der Linearität ist

D.h. der Differenzenquotient zu ist gleich dem Wert unter des Differenzenquotienten zu . Wegen der Voraussetzung und der Stetigkeit einer linearen Abbildung existiert der Limes links für , also existiert auch der Limes rechts, und das bedeutet, dass der Differentialquotient der zusammengesetzten Abbildung existiert und mit dem Wert unter des Differentialquotienten zu übereinstimmt.


Beispiel  

Es sei

eine differenzierbare Bewegung im Raum, bei der man sich nur für die lineare Projektion der Bewegung auf eine Ebene interessiert. Eine solche Situation liegt beispielsweise vor, wenn man zu einer Flugbewegung nur die Bewegung des Schattens des Flugkörpers auf der Erdoberfläche beschreiben möchte

(bei parallel gedachten Lichtstrahlen). Die Projektion wird (in geeigneten Koordinaten) durch eine lineare Abbildung

beschrieben.

Lemma 34.10 besagt in dieser Situation, dass der Geschwindigkeitsvektor der Schattenbewegung einfach die Projektion des Geschwindigkeitsvektors der Flugbewegung ist.




Fußnoten
  1. Die Menge der offenen Mengen eines metrischen Raumes wird als Topologie bezeichnet. Wesentliche Begriffe wie Konvergenz und Stetigkeit hängen nur von der Topologie ab.


<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)