Kurs:Differentialgeometrie (Osnabrück 2023)/Vorlesung 13
- Orientierungen auf Mannigfaltigkeiten
Definition
Es sei eine differenzierbare Mannigfaltigkeit. Eine Karte
mit und offen heißt orientiert, wenn der orientiert ist.
Wenn man einen Atlas aus orientierten Karten hat, so haben die Orientierungen auf den umgebenden Zahlenräumen , in denen die offenen Bilder der Karten liegen, erstmal nichts miteinander zu tun (obwohl man stets schreibt). Ein Zusammenhang zwischen den Orientierungen wird erst durch die beiden folgenden Begriffe formulierbar.
Definition
Es sei eine differenzierbare Mannigfaltigkeit und es seien und orientierte Karten. Dann heißt der zugehörige Kartenwechsel
orientierungstreu, wenn für jeden Punkt das totale Differential
orientierungstreu ist.
Definition
Eine differenzierbare Mannigfaltigkeit mit einem Atlas heißt orientiert, wenn jede Karte orientiert ist und wenn sämtliche Kartenwechsel orientierungstreu sind.

Bei einer orientierten Mannigfaltigkeit besitzt jeder Tangentialraum eine Orientierung. Man kann einfach eine beliebige Kartenumgebung (aus dem orientierten Atlas) wählen und die Orientierung auf
mittels nach transportieren. Wegen der Orientierungstreue der Kartenwechsel ist diese Orientierung unabhängig von der gewählten Kartenumgebung.
In einer orientierten Mannigfaltigkeit kann man auch zu zwei Basen in den Tangentialräumen zu zwei verschiedenen Punkten sagen, ob sie die gleiche Orientierung repräsentieren oder nicht. Dies ist der Fall, wenn beide Basen die Orientierung der Mannigfaltigkeit repräsentieren oder aber beide nicht.
Eine Mannigfaltigkeit heißt orientierbar, wenn sie diffeomorph zu einer orientierten Mannigfaltigkeit ist. D.h. wenn es einen Atlas gibt, der die gleiche differenzierbare Struktur definiert und der zusätzlich orientiert werden kann.
- Kompaktheit
Teilmengen eines euklidischen Raumes, die sowohl abgeschlossen als auch beschränkt sind, nennt man kompakt. Auf topologischen Räumen, die nicht durch eine Metrik gegeben sind, kann man nicht von beschränkt sprechen, aber auch bei einem metrischen Raum, der keine Teilmenge eines ist, führen die beiden Eigenschaften abgeschlossen und beschränkt nicht sehr weit. Schlagkräftiger ist das folgende Konzept.
Definition
Ein topologischer Raum heißt kompakt (oder überdeckungskompakt), wenn es zu jeder offenen Überdeckung
eine endliche Teilmenge derart gibt, dass
ist.
Diese Eigenschaft nennt man manchmal auch überdeckungskompakt. Häufig nimmt man zu kompakt noch die Eigenschaft Hausdorffsch mit hinzu. Es sei betont, dass diese Eigenschaft nicht besagt, dass es eine endliche Überdeckung aus offenen Mengen gibt (es gibt immer die triviale offene Überdeckung mit dem Gesamtraum), sondern dass man, wenn irgendeine irgendwie indizierte offene Überdeckung vorliegt, dann nur eine endliche Teilmenge aus der Indexmenge für die Überdeckung nötig ist.
Lemma
Es sei ein topologischer Raum mit einer abzählbaren Basis.
Dann ist genau dann kompakt, wenn jede Folge in einen Häufungspunkt (in ) besitzt.
Beweis
Es sei kompakt und sei eine Folge gegeben. Nehmen wir an, dass diese Folge keinen Häufungspunkt besitzt. Das bedeutet, dass es zu jedem eine offene Umgebung gibt, in der es nur endlich viele Folgenglieder gibt. Wegen
gibt es nach Voraussetzung eine endliche Teilüberdeckung
Es sei die Folgeneigenschaft erfüllt und sei eine Überdeckung mit offenen Mengen. Da eine abzählbare Basis besitzt, gibt es nach Aufgabe . eine abzählbare Teilmenge mit
Wir können
annehmen. Nehmen wir an, dass die Überdeckung
keine endliche Teilüberdeckung besitzt. Dann ist insbesondere
für jedes
und daher gibt es zu jedem
ein
mit .
Nach Voraussetzung besitzt diese Folge einen Häufungspunkt . Da eine Überdeckung
vorliegt, gibt es ein
mit
.
Da ein Häufungspunkt ist, liegen unendlich viele Folgenglieder in . Dies ist ein Widerspruch, da nach Konstruktion für
die Folgenglieder nicht zu gehören.
Der folgende Satz heißt Satz von Heine-Borel.
Satz
Es sei eine Teilmenge Dann sind folgende Aussagen äquivalent.
- ist überdeckungskompakt.
- Jede Folge in besitzt einen Häufungspunkt in .
- Jede Folge in besitzt eine in konvergente Teilfolge.
- ist abgeschlossen und beschränkt.
Beweis
Die Äquivalenz von (1) und (2) wurde allgemeiner in
Lemma 17.4 (Maß- und Integrationstheorie (Osnabrück 2022-2023))
bewiesen, für die Existenz einer abzählbaren Basis siehe
Aufgabe *****.
Die Äquivalenz von (2) und (3) ist klar.
Die Äquivalenz von (3) und (4) wurde in
Satz 36.9 (Analysis (Osnabrück 2021-2023))
gezeigt.
- Maße auf Mannigfaltigkeiten
Es sei eine Mannigfaltigkeit. Gibt es ein sinnvolles Volumen für (Teilmengen von) , wann kann man eine auf definierte Funktion sinnvoll integrieren? Wenn man die Maßtheorie als allgemeines Konzept zugrunde legt, so ergibt sich folgendes Bild: es sei vorausgesetzt, dass einen abzählbaren Atlas besitzt. Ein Maß auf den Borelmengen ist dann durch die Einschränkungen des Maßes auf die offenen Teilmengen eindeutig bestimmt. Für jedes definiert die Homöomorphie
das Bildmaß auf . Dabei stehen die Bildmaße , , untereinander in der Beziehung
für jede messbare Teilmenge . Mit den Kartenwechseln bedeutet dies
für jede messbare Menge , die ganz innerhalb des Definitionsbereiches der Übergangsabbildung liegt.
Nehmen wir nun an, dass sich die Bildmaße jeweils mit einer Dichte bezüglich des Borel-Lebesgue-Maßes schreiben lassen, sagen wir
integrierbaren Funktionen . Für eine messbare Teilmenge gilt dann also
Für eine messbare Teilmenge gilt somit nach der Transformationsformel, angewendet auf die diffeomorphe Übergangsabbildung
die in überführt, die Gleichheit
Dies legt für die Dichtefunktionen , , das Transformationsverhalten
nahe (auch wenn es dies nicht erzwingt, da eine Dichte durch ihr Maß nicht eindeutig bestimmt ist). Wir werden die Integrationstheorie für Mannigfaltigkeiten auf dem Konzept der -Differentialformen aufbauen, die in natürlicher Weise dieses Transformationsverhalten (ohne den Betrag) besitzen.
<< | Kurs:Differentialgeometrie (Osnabrück 2023) | >> PDF-Version dieser Vorlesung Arbeitsblatt zur Vorlesung (PDF) |
---|