Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II/Arbeitsblatt 31/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Referenznummer erstellen

Zeige, dass das Standardskalarprodukt auf dem in der Tat ein Skalarprodukt ist.


Aufgabe Referenznummer erstellen

Sei ein reeller Vektorraum mit einem Skalarprodukt und sei ein Untervektorraum. Zeige, dass die Einschränkung des Skalarproduktes auf ebenfalls ein Skalarprodukt ist.


Aufgabe * Referenznummer erstellen

Es sei ein komplexer Vektorraum mit einem Skalarprodukt . Zeige, dass der Realteil dieses Skalarproduktes ein Skalarprodukt auf dem zugrunde liegenden reellen Vektorraum ist.


Aufgabe Referenznummer erstellen

Es seien

mit und . Berechne im Sinne von Beispiel 31.6.


Aufgabe Referenznummer erstellen

Es sei ein abgeschlossenes reelles Intervall mit und sei . Zu und sei

Welche Eigenschaften eines Skalarproduktes erfüllt , welche nicht? Welche Beziehung besteht zwischen und dem Skalarprodukt aus Beispiel 31.6?


Aufgabe Referenznummer erstellen

Sei ein Vektorraum über mit einem Skalarprodukt und der zugehörigen Norm . Zeige, dass die sogenannte Parallelogrammgleichung

gilt.


Aufgabe Referenznummer erstellen

Sei ein reeller Vektorraum mit einem Skalarprodukt . Zeige, dass in der Abschätzung

von Cauchy-Schwarz genau dann die Gleichheit gilt, wenn und linear abhängig sind.


Aufgabe Aufgabe 31.8 ändern

Es sei ein -Vektorraum mit Skalarprodukt und der zugehörigen Norm .

a) Zeige, dass bei die Beziehung

gilt.

b) Zeige, dass bei die Beziehung


Aufgabe Referenznummer erstellen

Sei ein Vektorraum über mit einem Skalarprodukt . Zeige, dass der zugehörige Abstand die folgenden Eigenschaften besitzt (dabei sind ).

  1. Es ist .
  2. Es ist genau dann, wenn .
  3. Es ist .
  4. Es ist


Aufgabe Referenznummer erstellen

Es seien und reelle Vektorräume mit Skalarprodukten. Zeige, dass auf dem Produktraum durch

ein Skalarprodukt definiert ist.


Aufgabe Referenznummer erstellen

Sei . Zeige, dass für die Norm auf dem kein Skalarprodukt existiert mit der Eigenschaft .


Aufgabe * Aufgabe 31.12 ändern

Zeige, dass ein normierter -Vektorraum durch

zu einem metrischen Raum wird.


Aufgabe * Referenznummer erstellen

Es seien und zwei Punkte im . Bestimme den Abstand zwischen diesen beiden Punkten in

a) der euklidischen Metrik,

b) der Summenmetrik,

c) der Maximumsmetrik.

d) Vergleiche diese verschiedenen Abstände der Größe nach.


Aufgabe * Referenznummer erstellen

Es sei eine nichtleere Menge, und das -fache Produkt der Menge mit sich selbst.

a) Zeige, dass auf durch

eine Metrik definiert wird.

b) Bestimme zu und den Abstand .

c) Liste für und alle Elemente aus der offenen Kugel auf.


Aufgabe Referenznummer erstellen

Es sei die Menge aller (Personen)-Bahnhöfe in Deutschland. Zu sei

die (zeitlich) kürzeste fahrplanmäßige Verbindung von nach . Handelt es sich dabei um eine Metrik?


Es sei eine Menge und

eine Funktion. Dann nennt man

das Supremum (oder die Supremumsnorm) von . Es ist eine nichtnegative reelle Zahl oder .


Aufgabe Referenznummer erstellen

Es sei eine Menge und

die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass ein komplexer Vektorraum ist.


Aufgabe Referenznummer erstellen

Es sei eine Menge und

die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass die Supremumsnorm auf folgende Eigenschaften erfüllt.

  1. für alle .
  2. genau dann, wenn ist.
  3. Für und gilt
  4. Für gilt


Aufgabe Referenznummer erstellen

Es sei eine Menge und ein euklidischer Vektorraum. Es sei

die Menge der beschränkten Abbildungen von nach . Zeige, dass die Supremumsnorm auf eine Norm ist.


Aufgabe Referenznummer erstellen

Es sei eine Menge, ein euklidischer Vektorraum und

die Menge der beschränkten Abbildungen von nach . Zeige, dass eine Folge aus genau dann gegen gleichmäßig konvergiert, wenn diese Folge im durch die Supremumsnorm gegebenen metrischen Raum konvergiert.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)Referenznummer erstellen

Es seien

mit und . Berechne

im Sinne von Beispiel 31.6.


Aufgabe (3 Punkte)Referenznummer erstellen

Sei ein reeller Vektorraum mit einem Skalarprodukt . Bestätige


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei . Zeige, dass versehen mit der Abbildung

ein euklidischer Vektorraum ist.


Aufgabe (5 Punkte)Referenznummer erstellen

Es seien Punkte in der Kreisscheibe mit Mittelpunkt und Radius , also in , gegeben. Zeige, dass es einen Punkt mit der Eigenschaft

gibt.


Aufgabe (3 Punkte)Referenznummer erstellen

Es seien mit und . Zeige, dass es ein mit gibt.


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)