Kurs:Mathematik für Anwender/Teil I/60/Klausur mit Lösungen

Aus Wikiversity
Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Punkte 3 3 3 3 6 3 5 6 7 1 2 5 5 3 11 3 2 2 3 4 4 4 4 3 95

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Ein angeordneter Körper.
  2. Die Konvergenz einer reellen Folge gegen .
  3. Die Differenzierbarkeit einer Abbildung
    in einem Punkt

    .

  4. Die Riemann-Integrierbarkeit einer Funktion

    auf einem kompakten Intervall .

  5. Eine invertierbare -Matrix über einem Körper .
  6. Die algebraische Vielfachheit von einem Eigenwert zu einer linearen Abbildung

    auf einem endlichdimensionalen - Vektorraum .

Lösung

  1. Ein Körper heißt angeordneter Körper, wenn es zwischen den Elementen von eine Beziehung („größer als“) gibt, die die folgenden Eigenschaften erfüllt ( bedeutet oder ).
    1. Für je zwei Elemente gilt entweder oder oder .
    2. Aus und folgt (für beliebige ).
    3. Aus folgt (für beliebige ).
    4. Aus und folgt (für beliebige ).
  2. Die Konvergenz gegen bedeutet, dass es zu jedem reellen ein derart gibt, dass für alle die Abschätzung

    gilt.

  3. Die Funktion heißt differenzierbar in , wenn der Limes

    existiert.

  4. Die Funktion heißt Riemann-integrierbar auf , wenn Ober- und Unterintegral von existieren und übereinstimmen.
  5. Die Matrix heißt invertierbar, wenn es eine Matrix mit

    gibt.

  6. Den Exponenten des linearen Polynoms im charakteristischen Polynom nennt man die algebraische Vielfachheit von .


 

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Nullstellensatz.
  2. Der Satz über die Beziehung von Stetigkeit und Riemann-Integrierbarkeit.
  3. Der Satz über partielle Integration.

Lösung

  1. Seien reelle Zahlen und sei eine stetige Funktion mit und . Dann gibt es ein mit und mit .
  2. Sei ein reelles Intervall und sei
    eine stetige Funktion. Dann ist Riemann-integrierbar.
  3. Es seien
    stetig differenzierbare Funktionen.

    Dann gilt


 

Aufgabe (3 Punkte)

Erläutere das Konzept der Wohldefiniertheit anhand eines typischen Beispiels.

Lösung

Wohldefiniertheit/Typisches Beispiel/Aufgabe/Lösung

 

Aufgabe * (3 (1+1+1) Punkte)

Wir betrachten die durch die Wertetabelle

gegebene Abbildung

a) Bestimme das Bild von unter .

b) Bestimme das Urbild von unter .

c) Erstelle eine Wertetabelle für

Lösung

a) Das Bild von ist .

b) Das Urbild von ist .

c)


 

Aufgabe * (6 (3+1+2) Punkte)

  1. Bestimme diejenigen reellen Polynomfunktionen, die bijektiv sind und für die die Umkehrfunktion ebenfalls polynomial ist.
  2. Man gebe ein Beispiel für eine bijektive reelle Polynomfunktion, für die die Umkehrfunktion kein Polynom ist.
  3. Zeige, dass durch das Polynom eine bijektive Abbildung

    gegeben ist. Ist die Umkehrabbildung polynomial?

Lösung

  1. Die einzigen reellen Polynome mit polynomialer Umkehrfunktion sind die Polynome der Form mit

    Für diese ist die Umkehrfunktion, da ja wegen

    und

    diese Funktionen invers zueinander sind. Wir zeigen, dass es darüberhinaus keine weiteren Polynome mit polynomialer Umkehrfunktion gibt. Ein konstantes Polynom ist nicht bijektiv. Es sei also ein Polynom, das zumindest einen Grad besitzt. Wenn man darin ein weiteres nichtkonstantes Polynom einsetzt, ergibt sich aber ebenfalls ein Polynom vom Grad und nicht . D.h., dass keine polynomiale Umkehrfunktion besitzen kann.

  2. Die Funktion

    ist bijektiv nach Fakt *****, nach Teil (1) kann aber die Umkehrfunktion nicht polynomial sein.

  3. Die vollständige Wertetabelle zu dieser Funktion ist

    also ist die Funktion bijektiv. Diese Funktion ist offenbar zu sich selbst invers, also ist die Umkehrfunktion polynomial.


 

Aufgabe * (3 (1+1+1) Punkte)

Am 26.4.2021 schreibt die Tagesschau (tagesschau.de): „In Deutschland sind inzwischen mehr als 25 Millionen Menschen mindestens ein Mal geimpft“. Im ausführlichen Text heißt es dann „In Deutschland sind inzwischen mehr als 25 Millionen Impfdosen verabreicht worden. Wie das Robert Koch-Institut (RKI) mitteilte, sei die Marke am Wochenende überschritten worden [und] liegt nun bei 25,45 Millionen. Laut aktuellen RKI-Zahlen sind bundesweit bislang knapp 19,5 Millionen Menschen erstgeimpft. Das entspricht einem Bevölkerungsanteil von 23,4 Prozent. Knapp sechs Millionen Menschen sind inzwischen bereits zweimal geimpft, dies entspricht 7,2 Prozent der Bevölkerung“.

  1. Was fällt auf?
  2. Wie groß ist die Bevölkerung von Deutschland?
  3. Wie viel Prozent der Erstgeimpften haben auch eine zweite Impfung erhalten?

Lösung

  1. Es liegt ein Widerspruch vor. Einmal sind mehr als 25 Millionen Menschen erstgeimpft, einmal sind es 19,5 Millionen Menschen.
  2. Die entsprechen , daher ergeben sich aus

    also

    Ebenso ergibt sich

  3. Der Anteil der Zweitgeimpften zu den Erstgeimpften ist

    das sind etwa .


 

Aufgabe * (5 Punkte)

Es seien und Folgen in einem angeordneten Körper mit für alle . Es sei eine Nullfolge. Zeige, dass ebenfalls eine Nullfolge ist.

Lösung

Es sei vorgegeben. Zu gibt es wegen der Nullkonvergenz von ein derart, dass

für alle ist. Für diese zeigen wir

durch eine Fallunterscheidung. Wenn

ist, so ist wegen der Positivität direkt . Es sei also umgekehrt oder . Dann ist jedenfalls und somit . Damit ist unter Verwendung der dritten binomischen Formel


 

Aufgabe * (6 (1+1+1+3) Punkte)

Wir betrachten die Funktion

a) Skizziere .

b) Bestimme die Ableitung von .

c) Bestimme die zweite Ableitung von .

d) Untersuche auf Extrema, Monotonieverhalten und Wendepunkte.

Lösung

a) Skizze.

b) Es ist

c) Es ist

d) Wegen ist und daher ist die Funktion streng fallend und besitzt im offenen Einheitsintervall keine Extrema. Der Nenner von ist stets negativ. Für den Zähler gilt

genau dann, wenn

Für ist die zweite Ableitung negativ und für

ist die zweite Ableitung positiv. Daher liegt bei ein Wendepunkt vor.


 

Aufgabe * (7 Punkte)

Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Zeige, dass auch Riemann-integrierbar ist.

Lösung

Wir müssen zeigen, dass es zu jedem eine obere und eine untere Treppenfunktion gibt derart, dass die Differenz der beiden Treppenintegrale ist. Es sei also ein vorgegeben. Aufgrund der Riemann-Integrierbarkeit gibt es Treppenfunktionen

und

Wir können annehmen, dass diesen Treppenfunktionen die gleiche Unterteilung zugrunde liegt. Es sei , die Länge des -ten Teilintervalls und es sei

Dann gilt

Wir setzen

Dies ist offenbar eine untere bzw. obere Treppenfunktionen für . Wir betrachten ein Teilintervall der gegebenen Unterteilung. Wenn dort

gilt, so ist dort

Wenn dort

gilt, so ist dort ebenfalls

 Dies gilt auch in den beiden anderen Fällen.


Damit ist die Differenz der Treppenintegrale .


 

Aufgabe * (1 Punkt)

Es sei

eine lineare Abbildung. Es sei . Zeige .

Lösung

Es ist

Daher sind und zueinander invers, und wegen der Eindeutigkeit des Negativen folgt


 

Aufgabe * (2 Punkte)

Bestimme die Punktrichtungsform für die durch die Gleichung

im gegebene Gerade.

Lösung

Es ist ein Punkt der Geraden, und der Richtungsvektor ist . Somit ist

eine Beschreibung der Geraden in Punktrichtungsform.


 

Aufgabe * (5 Punkte)

Bestimme eine Basis des Urbildes von

zur linearen Abbildung

Lösung

Wir betrachten das inhomogene lineare Gleichungssystem

Wir ersetzen die zweite Gleichung durch 3I-2II und die dritte durch I-III und erhalten das äquivalente System

Daraus sieht man insbesondere, dass die Lösungsmenge zweidimensional ist. Man sieht außerdem, dass der Kern der Abbildung selbst eindimensional ist und aus der Dimensionsformel folgt, dass die Abbildung surjektiv ist, insbesondere liegt also jeder Punkt von im Bild. Um linear unabhängige Elemente der Lösungsmenge zu erhalten setzen wir zunächst und und erhalten ,

und .

Wenn wir und setzen, erhalten wir ,

und .

Eine Basis des Urbildes ist daher gegeben durch die beiden Vektoren und .


 

Aufgabe * (5 (2+3) Punkte)

Es sei ein Körper und sei eine lineare Abbildung. Zeige die folgenden Eigenschaften.

  1. Es ist .
  2. Für jede Linearkombination in gilt

Lösung

  1. Aufgrund der Additivität der linearen Abbildung ist

    Addition mit dem negativen Element zu , also mit , ergibt

  2. Wir beweisen die Aussage durch Induktion über . Für

    ist dies einfach die Verträglichkeit einer linearen Abbildung mit der Skalarmultiplikation. Unter Verwendung der Induktionsvoraussetzung und der Verträglichkeit mit Addition und Skalarmultiplikation ist


 

Aufgabe (3 Punkte)

Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde. Zeige, dass

gilt.

Lösung

Lineare Abbildung/Matrix bzgl. Basis/Rang/Fakt/Beweis/Aufgabe/Lösung

 

Aufgabe * (11 (3+3+2+3) Punkte)

Es sei ein Körper und seien

Elemente, die nicht alle gleich seien. Wir betrachten die - Matrix

wobei die Einträge durch

gegeben sind.

a) Bestimme den Rang der Matrix .

b) Zeige, dass der Vektor ein Eigenvektor zu ist und bestimme den zugehörigen Eigenwert.

c) Zeige, dass bei diagonalisierbar ist.


d) Zeige, dass bei nicht diagonalisierbar sein muss.

Lösung

a) Es ist

Daher besitzt die durch gegebene lineare Abbildung eine Faktorisierung der Form

Daher ist das Bild von maximal eindimensional und der Rang der Matrix ist höchstens . Da nicht alle gleich sind, ist nicht die Nullmatrix und daher ist der Rang genau .

b) Es ist

Da nicht alle gleich sind, ist dieser Vektor ein Eigenvektor zum Eigenwert .

c) Die Matrix besitzt aufgrund der Rangeigenschaft einen -dimensionalen Kern. Ferner gibt es einen weiteren Eigenvektor zu einem von verschiedenen Eigenwert (da wir in sind und eine Summe von Quadraten betrachten). Daher ist die Summe der Dimensionen der Eigenräume gleich und somit liegt nach Fakt ***** eine diagonalisierbare Abbildung vor.

d) Es sei und . Die in Frage stehende Matrix ist dann

Das charakteristische Polynom davon ist

Daher ist der einzige Eigenwert. Der Kern ist aber eindimensional, daher ist die Matrix nicht diagonalisierbar.


 

Aufgabe * (3 Punkte)

Löse das folgende lineare Gleichungssystem über dem Körper .

Lösung

Das inverse Element zu in ist , somit ist in die Variable eliminiert. Dies ergibt

Somit ist

und aus

ergibt sich

und somit

Die einzige Lösung ist also .


 

Aufgabe * (2 Punkte)

Löse die quadratische Gleichung über .

Lösung

Die normierte Gleichung ist (Multiplikation mit )

Die p-q-Formel ergibt

Somit ist

und


 

Aufgabe * (2 Punkte)

Es sei ein - dimensionaler - Vektorraum und seien zwei verschiedene -dimensionale Untervektorräume von . Welche Dimension hat und welche Dimension hat ?

Lösung

Da die beiden Räume verschieden sind, ist in

die erste Inklusion echt und daher muss schon der Gesamtraum sein, also von der Dimension . Nach Fakt ***** ist somit


 

Aufgabe * (3 Punkte)

Es sei eine reell-symmetrische - Matrix. Zeige, dass einen Eigenwert besitzt.

Lösung

Die Matrix hat die Form

Das charakteristische Polynom hat daher die Form

Wir schreiben dies als

Da

nichtnegativ ist, kann man daraus im Reellen die Quadratwurzel ziehen und das charakteristische Polynom besitzt Nullstellen, die Eigenwerte der Matrix sind.


 

Aufgabe * (4 (2+2) Punkte)

Wir betrachten die lineare Abbildung , die durch die Matrix gegeben ist.

  1. Bestimme das Bild der durch die Gleichung

    gegebenen Geraden.

  2. Bestimme das Urbild der durch die Gleichung

    gegebenen Geraden.

Lösung

  1. Die Gerade kann man auch als

    auffassen. Das Bild des erzeugenden Vektors ist

    Alle Vielfache von werden auf Vielfache von abgebildet, somit ist die Bildgerade gleich

  2. Wir schreiben die Koordinaten des ersten Raumes als und die Koordinaten den zweiten Raumes als . Aus der Beziehung

    ergibt sich

    Somit wird die Urbildgerade durch die Gleichung

    beschrieben.


 

Aufgabe * (4 Punkte)

Beweise den Satz über die Dimension eines Untervektorraum .

Lösung

Sei . Jede linear unabhängige Familie in ist auch linear unabhängig in . Daher kann es aufgrund des Basisaustauschsatzes in nur linear unabhängige Familien der Länge geben. Es sei derart, dass es in eine linear unabhängige Familie mit Vektoren gibt, aber nicht mit Vektoren. Sei eine solche Familie. Diese ist dann insbesondere eine maximal linear unabhängige Familie in und daher wegen Satz 23.12 (Mathematik für Anwender (Osnabrück 2023-2024)) eine Basis von .


 

Aufgabe * (4 Punkte)

Zeige, dass

eine Nullstelle des Polynoms

ist.

Lösung

Es ist


 

Aufgabe * (4 Punkte)

Wir betrachten die lineare Abbildung , die durch die Matrix gegeben ist.

  1. Bestimme das Bild der durch die Gleichung

    gegebenen Geraden.

  2. Bestimme das Urbild der durch die Gleichung

    gegebenen Geraden.

Lösung

  1. Die Gerade kann man auch als

    auffassen. Das Bild des erzeugenden Vektors ist

    Alle Vielfache von werden auf Vielfache von abgebildet, somit ist die Bildgerade gekürzt gleich

  2. Wir schreiben die Koordinaten des ersten Raumes als und die Koordinaten den zweiten Raumes als . Aus der Beziehung

    ergibt sich

    Somit wird die Urbildgerade durch die Gleichung

    beschrieben.


 

Aufgabe * (3 Punkte)

Es sei ein Körper und es seien und zwei - Vektorräume. Es sei

eine bijektive lineare Abbildung. Zeige, dass dann auch die Umkehrabbildung

linear ist.

Lösung

Seien . Wegen der Bijektivität gibt es eindeutige mit und . Somit ist

Entsprechend ist (mit )