Zum Inhalt springen

Kurs:Elementare Algebra/5/Klausur mit Lösungen/kontrolle

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Punkte 3 3 4 3 1 4 1 4 3 3 2 7 3 4 3 12 4 64




Aufgabe (3 Punkte)


Lösung

  1. Ein Körper ist ein kommutativer Ring, wenn ist und wenn jedes von verschiedene Element in ein multiplikatives Inverses besitzt.
  2. Der Index ist die Anzahl der (Links- oder Rechts-)Nebenklassen von in .
  3. Die Quotientenmenge

    mit der eindeutig bestimmten Gruppenstruktur heißt Restklassengruppe von modulo .

  4. Die Einheitengruppe in ist die Teilmenge aller Einheiten in .
  5. Eine Nichteinheit in einem kommutativen Ring heißt irreduzibel, wenn eine Faktorisierung nur dann möglich ist, wenn einer der Faktoren eine Einheit ist.
  6. Eine Körpererweiterung vom Grad zwei heißt eine quadratische Körpererweiterung.


Aufgabe (3 Punkte)


Lösung

  1. Es ist
  2. Elemente besitzen stets einen größten gemeinsamen Teiler , und dieser lässt sich als Linearkombination der darstellen, d.h. es gibt Elemente mit .
  3. Es sei ein Körper mit einer Charakteristik und es sei eine quadratische Körpererweiterung. Dann gibt es ein  ,  und .


Aufgabe (4 Punkte)

Zeige, dass für jede ungerade Zahl die Zahl ein Vielfaches von ist.


Lösung

Eine ungerade Zahl besitzt die Form mit einer ganzen Zahl . Somit ist

Die hinten ist ein Vielfaches von . Genau eine der beiden Zahlen und ist gerade, also von der Form . Daher ist ein Vielfaches von und somit ist die gesamte Zahl ein Vielfaches von .


Aufgabe (3 Punkte)

Zeige durch Induktion, dass jede natürliche Zahl eine Zerlegung in Primzahlen besitzt.


Lösung

Wir beweisen die Existenz durch Induktion über .  Für liegt eine Primzahl vor. Bei ist entweder eine Primzahl, und diese bildet die Primfaktorzerlegung, oder aber ist keine Primzahl. In diesem Fall gibt es eine nichttriviale Zerlegung mit kleineren Zahlen . Für diese Zahlen gibt es nach Induktionsvoraussetzung jeweils eine Zerlegung in Primfaktoren, und diese setzen sich zu einer Primfaktorzerlegung für zusammen. 


Aufgabe (1 Punkt)

Finde die Primfaktorzerlegung von


Lösung

Es ist

wobei Primzahlen sind.


Aufgabe (4 Punkte)

Zeige, dass ein euklidischer Bereich ein Hauptidealbereich ist.


Lösung

Es sei ein von verschiedenes Ideal. Betrachte die nichtleere Menge

Diese Menge hat ein Minimum , das von einem Element , herrührt, sagen wir . Wir behaupten, dass ist. Dabei ist die Inklusion „“ klar. Zum Beweis der Inklusion „“ sei gegeben. Aufgrund der Definition eines euklidischen Bereiches gilt mit oder . Wegen und der Minimalität von kann der zweite Fall nicht eintreten. Also ist und ist ein Vielfaches von .


Aufgabe (1 Punkt)

Bestimme, ob die durch die Gaußklammer gegebene Abbildung

ein Gruppenhomomorphismus ist oder nicht.


Lösung

Die Gaußklammer definiert keinen Gruppenhomomorphismus, da ist und damit

aber

ist.


Aufgabe (4 Punkte)

Es sei eine Gruppe und ein Element mit endlicher Ordnung. Zeige, dass die Ordnung von mit dem minimalen übereinstimmt, zu dem es einen Gruppenhomomorphismus

gibt, in dessen Bild das Element liegt.


Lösung

Wenn im Bild eines Gruppenhomomorphismus

liegt, so liegt insbesondere in einer Untergruppe einer Ordnung und nach dem Satz von Lagrange ist die Ordnung von ebenfalls . Die Ordnung ist also höchstens gleich dem Minimum der natürlichen Zahlen , für die es einen solchen Gruppenhomomorphismus gibt.

Es sei umgekehrt die Ordnung von . Der kanonische Gruppenhomomorphismus

besitzt den Kern . Aufgrund des Satzes vom induzierten Homomorphismus induziert dieser Gruppenhomomorphismus einen Gruppenhomomorphismus

und gehört dabei zum Bild.


Aufgabe (3 Punkte)

Schreibe den Restklassenring als ein Produkt von Körpern, wobei lediglich die Körper und vorkommen. Schreibe die Restklasse von als ein Tupel in dieser Produktzerlegung.


Lösung

Es ist

und ist irreduzibel, da es keine rationale Nullstelle besitzt. Es handelt sich also um die Primfaktorzerlegung, wobei die Faktoren paarweise nicht assoziiert sind, da sie ja alle normiert sind. Nach dem chinesischen Restsatz für Hauptidealbereiche gilt daher die Produktzerlegung
wobei wir für das zweite Gleichheitszeichen die Einsetzungen und und die Isomorphie verwendet haben. Das Element wird unter den drei Projektionen auf und abgebildet, es ist also gleich


Aufgabe (3 (1.5+1.5) Punkte)


a) Bestimme für die Zahlen , und modulare Basislösungen, finde also die kleinsten positiven Zahlen, die in

die Restetupel und repräsentieren.


b) Finde mit den Basislösungen die kleinste positive Lösung der simultanen Kongruenzen


Lösung


a) : Alle Vielfachen von haben modulo und modulo den Rest . Unter diesen Vielfachen muss also die Lösung liegen. hat modulo den Rest , somit hat modulo den Rest . Also repräsentiert das Restetupel .

: Hier betrachtet man die Vielfachen von , und hat modulo den Rest . Also repräsentiert das Restetupel .

: Hier betrachtet man die Vielfachen von , und hat modulo den Rest . Also repräsentiert das Restetupel .


b) Man schreibt (in )

Die Lösung ist dann

Die minimale Lösung ist dann .


Aufgabe (2 Punkte)

Zeige, dass es keinen Ringhomomorphismus von nach gibt.


Lösung

Nehmen wir an, dass es einen Ringhomomorphismus

gebe. Dann wäre

In sind aber alle Quadrate positiv und besitzt keine Quadratwurzel, sodass ein Widerspruch vorliegt.


Aufgabe (7 Punkte)

Es sei eine Primzahl. Finde die Partialbruchzerlegung von

in .


Lösung

Es ist

und der zweite Faktor ist irreduzibel nach Lemma 27.12 (Elemente der Algebra (Osnabrück 2024-2025)). Nach Korollar 18.5 (Elemente der Algebra (Osnabrück 2024-2025)) muss es daher eine Darstellung der Form

geben. Multiplikation mit dem Hauptnenner führt auf

Also ist

für jedes ist (der Koeffizient zu )

und

Durch Addition der ersten Bedingungen erhält man

für . Aus

und

ergibt sich

und daraus

Die Partialbruchzerlegung ist demnach


Aufgabe (3 Punkte)

Drücke in den Vektor

als Linearkombination der Vektoren

aus.


Lösung

Es geht darum, das lineare Gleichungssystem

zu lösen. Wir eliminieren mit Hilfe der dritten Gleichung die Variable aus der ersten Gleichung. Das resultierende System ist ()

Wir eliminieren nun aus mittels die Variable , das ergibt ()

Wir können jetzt dieses System lösen. Es ist

und

Also ist


Aufgabe (4 Punkte)

Es sei ein endlicher Körper. Zeige, dass die Anzahl der Elemente von die Potenz einer Primzahl ist.


Lösung

Der endliche Körper kann nicht die Charakteristik besitzen, und als Charakteristik eines Körpers kommt ansonsten nach Lemma 13.5 (Elemente der Algebra (Osnabrück 2024-2025)) nur eine Primzahl in Frage. Diese sei mit bezeichnet. Das bedeutet, dass den Körper enthält. Damit ist aber ein Vektorraum über , und zwar, da endlich ist, von endlicher Dimension. Es sei die Dimension, . Dann hat man eine -Vektorraumisomorphie

und somit besitzt gerade Elemente.


Aufgabe (3 Punkte)

Es sei ein Körper mit einer Charakteristik und es sei eine quadratische Körpererweiterung. Zeige, dass es dann ein , , mit gibt.


Lösung

Nach Voraussetzung ist ein zweidimensionaler Vektorraum über , und darin ist ein eindimensionaler Untervektorraum. Nach dem Basisergänzungssatz gibt es ein Element derart, dass und eine -Basis von bilden. Wir können

schreiben, bzw. (da eine Einheit ist),

Mit gilt also und und bilden ebenfalls eine -Basis von .


Aufgabe (12 (3+1+6+2) Punkte)

Es sei eine Primzahl.

a) Bestimme den Grad der Körpererweiterung

Man gebe auch eine - Basis von an.

b) Zeige, dass in alle Elemente der Form und mit eine dritte Wurzel besitzen.

c) Die rationale Zahl besitze in eine dritte Wurzel. Zeige, dass die Form

mit besitzt.

d) Es sei nun eine weitere, von verschiedene Primzahl. Bestimme den Grad der Körpererweiterung


Lösung

a) Wegen besitzt das Polynom keine Nullstelle in . Daher ist es nach Lemma 6.9 (Elemente der Algebra (Osnabrück 2024-2025)) irreduzibel und somit ist nach Lemma 23.2 (Elemente der Algebra (Osnabrück 2024-2025)) das Minimalpolynom und somit besitzt die Körpererweiterung

den Grad . Eine - Basis ist durch gegeben.

b) Es ist

und

c) Eine dritte Potenz in besitzt die Form mit . Sei

mit . Dann ist

mit

und

Wegen müssen die beiden hinteren Komponenten sein, also

Daher ist auch

Es sei zuerst der hintere Faktor . Bei müsste

sein, was der Irrationalität dieser dritten Wurzel widerspricht. Also ist und damit auch .

Es sei nun

Wegen folgt daraus oder . In jedem Fall sind also mindestens zwei der Koeffizienten gleich . Die zugehörigen dritten Potenzen sind

und somit sind die rationalen Zahlen, die in diesem Körper eine dritte Wurzel besitzen, von der beschriebenen Art.

d) Wir betrachten die Körpererweiterung

Nach Teil b) ist . Somit ist irreduzibel über und daher besitzt nach der gleichen Argumentation wie unter a) die Körpererweiterung

den Grad . Nach der Gradformel besitzt die Gesamterweiterung

den Grad .


Aufgabe (4 Punkte)

Es sei eine zu teilerfremde natürliche Zahl. Zeige, dass der Winkel nicht mit Zirkel und Lineal konstruierbar ist.


Lösung

Wegen der Teilerfremdheit gibt es ganze Zahlen mit

Wenn der Winkel konstruierbar wäre, so könnte man diese Konstruktion mal aneinander anlegend durchführen und würde den Winkel erhalten. Dieser entspricht aber dem Winkel und dieser wäre dann ebenfalls konstruierbar. Dann wäre das regelmäßige -Eck konstruierbar. Wegen

ist dies aber nicht der Fall.