Cauchy-Folgen/Konstruktion der reellen Zahlen/Restklassenkörper/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Cauchy-Folgen

Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen noch gar nicht kennt. Wenn man beispielsweise die durch das babylonische Wurzelziehen konstruierte Folge (sagen wir zur Berechnung von ) mit einem rationalen Startwert betrachtet, so ist dies eine Folge aus rationalen Zahlen. Wenn wir diese Folge in betrachten, wo existiert, so ist die Folge konvergent. Innerhalb der rationalen Zahlen ist sie aber definitiv nicht konvergent. Es ist wünschenswert, allein innerhalb der rationalen Zahlen den Sachverhalt formulieren zu können, dass die Folgenglieder beliebig nahe zusammenrücken, auch wenn man nicht sagen kann, dass die Folgenglieder einem Grenzwert beliebig nahe zustreben. Dazu dient der Begriff der Cauchy-Folge.

Wir werden in der nächsten Vorlesung die reellen Zahlen mit Hilfe der rationalen Cauchy-Folgen konstruieren.


Definition  

Es sei ein angeordneter Körper. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Abschätzung

gilt.

Es werden also die Abstände von Folgenglieder untereinander verglichen, diese Schwankungen müssen beliebig klein werden. Grob gesprochen kann man sagen, dass eine Cauchy-Folge alle Eigenschaften einer konvergenten Folge besitzt bis auf die Konvergenz, bis auf die Existenz eines Grenzwertes. Eine nichtkonvergente Cauchy-Folge entdeckt eine „Lücke“. Beim Übergang von nach schließt man diese Lücken, indem man (Äquivalenzklassen von) Cauchy-Folgen hinzunimmt.



Satz  

Es sei ein angeordneter Körper. Dann ist jede konvergente Folge

eine Cauchy-Folge.

Beweis  

Sei die konvergente Folge mit Grenzwert . Sei gegeben. Wir wenden die Konvergenzeigenschaft auf an. Daher gibt es ein mit

Für beliebige gilt dann aufgrund der Dreiecksungleichung

  Also liegt eine Cauchy-Folge vor.




Lemma  

Es sei ein angeordneter Körper. Dann ist eine Folge genau dann eine Cauchy-Folge, wenn folgende Bedingung gilt: Zu jedem gibt es ein derart, dass für alle die Abschätzung gilt.

Beweis  

Eine Cauchy-Folge erfüllt auch die angegebene Bedingung, da man ja setzen kann.
Für die Umkehrung sei vorgegeben. Die Bedingung der Aussage gilt insbesondere für , d.h. es gibt ein derart, dass für jedes die Abschätzung

gilt. Damit gilt aufgrund der Dreiecksungleichung für beliebige die Abschätzung

so dass eine Cauchy-Folge vorliegt.




Lemma  

Eine Dezimalbruchfolge

in einem

archimedisch angeordneten Körper

ist eine Cauchy-Folge.

Beweis  

Wegen der definierenden Eigenschaft für eine Dezimalbruchfolge

ist

bzw.

Somit gilt für die Abschätzung

wobei wir im letzten Schritt die endliche geometrische Reihe benutzt haben. Dieser Ausdruck wird in einem archimedisch angeordneten Körper beliebig klein.

Dies bedeutet insbesondere, dass jede „Kommazahl“, also jede „unendliche Ziffernfolge“, eine Cauchy-Folge ist.



Lemma  

Es sei ein archimedisch angeordneter Körper und . Es sei ein positiver Startwert und die zugehörige Heron-Folge. Dann gelten folgende Aussagen.

  1. Die Heron-Folge ist eine Cauchy-Folge.
  2. Wenn es in ein positives Element mit gibt, so konvergiert die Folge gegen dieses Element.
  3. Wenn die Folge in gegen ein Element konvergiert, so ist .

Beweis  

  1. Zu ist nach Fakt  (3) und somit ist

    Diese Intervalllängen bilden nach Fakt  (4) eine Nullfolge.

  2. Nach Fakt  (1) ist

    Somit ist

    und rechts steht wieder die Nullfolge.

  3. Nach Fakt kann der Grenzwert nicht sein. Nach Fakt  (5) konvergiert daher gegen und somit konvergiert nach Fakt  (1)

    (Betrachten der beiden Seiten) gegen

    Daraus ergibt sich .



Definition  

Es sei ein angeordneter Körper und sei eine Folge in . Zu jeder streng wachsenden Abbildung , , heißt die Folge

eine Teilfolge der Folge.

Bei einer Teilfolge wählt man einfach gewisse Folgenglieder aus und überspringt andere.

Eine Dezimalbruchfolge ist nach Fakt eine Cauchy-Folge. Sie ist auch eine wachsende Folge, die nach oben beschränkt ist. Solche Folgen sind stets Cauchy-Folgen. Insbesondere ergibt sich Fakt erneut aus dem folgenden Lemma.



Lemma  

Es sei ein archimedisch angeordneter Körper. Es sei eine wachsende, nach oben beschränkte Folge.

Dann ist eine Cauchy-Folge.

Beweis  

Es sei eine obere Schranke, also für alle Folgenglieder .  Wir nehmen an, dass keine Cauchy-Folge ist, und verwenden die Charakterisierung aus Fakt. Somit gibt es ein derart, dass es für jedes ein mit gibt (wir können die Betragstriche wegen der Monotonie weglassen). Wir können daher induktiv eine wachsende Folge von natürlichen Zahlen definieren durch ,

etc. Andererseits gibt es aufgrund des Archimedesaxioms ein mit . Die Summe der ersten Differenzen der Teilfolge , , ergibt

  Dies impliziert im Widerspruch zur Voraussetzung, dass eine obere Schranke der Folge ist.



Lemma

Eine Cauchy-Folge in einem angeordneten Körper

ist beschränkt.

Beweis

Siehe Aufgabe.




Lemma  

Es sei ein angeordneter Körper. Es seien und Cauchy-Folgen in .

Dann sind auch die Summe und das Produkt der beiden Folgen wieder eine Cauchy-Folge.

Beweis  

Zum Beweis der Summeneigenschaft sei vorgegeben. Aufgrund der Cauchy-Eigenschaft gibt es natürliche Zahlen und mit

Diese Abschätzungen gelten dann auch für

Für diese Indizes gilt somit

Zum Beweis der Produkteigenschaft sei vorgegeben. Die beiden Cauchy-Folgen sind nach Fakt insbesondere beschränkt und daher existiert ein mit

für alle . Aufgrund der Cauchy-Eigenschaft gibt es natürliche Zahlen und mit

Diese Abschätzungen gelten dann auch für . Für diese Indizes gilt daher


Wenn eine Folge in konvergiert, so ist der Grenzwert oder positiv oder negativ. Wenn der Grenzwert positiv ist, so können zwar am Anfang der Folge auch negative Folgeglieder auftreten, ab einem bestimmten müssen aber alle Folgenglieder positiv sein, und zwar mindestens so groß wie die Hälfte des Grenzwertes. Eine entsprechende Einteilung gilt für Cauchy-Folgen, wie das folgende Lemma zeigt, das grundlegend für die (später einzuführende) Ordnung auf den reellen Zahlen ist.



Lemma  

Es sei ein angeordneter Körper und es sei eine Cauchy-Folge in . Dann gibt es die drei folgenden Alternativen.

  1. Die Folge ist eine Nullfolge.
  2. Es gibt eine positive Zahl derart, dass ab einem gewissen die Abschätzung

    für alle gilt.

  3. Es gibt eine positive Zahl derart, dass ab einem gewissen die Abschätzung

    für alle gilt.

Beweis  

Sei die Folge keine Nullfolge. Dann gibt es ein derart, dass es unendlich viele Folgenglieder mit

gibt. Dann gibt es auch unendlich viele Folgenglieder mit

oder mit

Nehmen wir das erste an. Wegen der Cauchy-Eigenschaft für gibt es ein derart, dass

für alle gilt. Wenn man die beiden Aussagen verbindet, so gilt für und einem mit

unter Verwendung von Fakt  (8) die Abschätzung

Dieses wählen wir als .




Lemma  

Es sei eine Cauchy-Folge in einem angeordneten Körper mit der Eigenschaft, dass es ein und ein derart gibt, dass für alle die Abschätzung

gilt.

Dann ist auch die durch (für hinreichend groß)

gegebene inverse Folge eine Cauchy-Folge.

Beweis  

Sei vorgegeben. Wegen der Cauchy-Eigenschaft von gibt es ein mit

für alle . Dann gilt für alle die Abschätzung



Das Vollständigkeitsaxiom


Definition  

Ein angeordneter Körper heißt vollständig oder vollständig angeordnet, wenn jede Cauchy-Folge in konvergiert (also in einen Grenzwert besitzt).


Axiom  

Die reellen Zahlen sind ein vollständiger archimedisch angeordneter Körper.

Damit haben wir alle Axiome der reellen Zahlen zusammengetragen: die Körperaxiome, die Anordnungsaxiome und das Vollständigkeitsaxiom. Alle weiteren Eigenschaften werden wir daraus ableiten. Diese Eigenschaften legen die reellen Zahlen eindeutig fest, d.h. wenn es zwei Modelle und gibt, die beide für sich genommen diese Axiome erfüllen, so kann man eine bijektive Abbildung von nach angeben, die alle mathematischen Strukturen erhält (sowas nennt man einen „Isomorphismus“, siehe Fakt).

Die Existenz der reellen Zahlen ist nicht trivial. Vom naiven Standpunkt her kann man die Vorstellung einer „kontinuierlichen lückenfreien Zahlengerade“ zugrunde legen, und dies als Existenznachweis akzeptieren. In einer strengeren mengentheoretischen Begründung der Existenz geht man von aus und konstruiert die reellen Zahlen als die Menge der Cauchy-Folgen in mit einer geeigneten Identifizierung.




Die Konstruktion der reellen Zahlen

Wir besprechen nun eine Konstruktion der reellen Zahlen. Die Idee der Konstruktion ist von der Zielsetzung her bestimmt: In soll jede Cauchy-Folge und insbesondere jede rationale Cauchy-Folge konvergieren. Von daher startet man mit der Menge aller rationalen Cauchy-Folgen und überlegt dann, welche von ihnen den gleichen Grenzwert haben müssen, falls er existiert. Beispielsweise ergibt das Heron-Verfahren zu unterschiedlichen Startwerten unterschiedliche Folgen, die aber die gleiche Wurzel, also die gleiche Lücke adressieren, und die somit identifiziert werden müssen.

Wir konstruieren, ausgehend von den rationalen Zahlen , einen vollständigen archimedisch angeordneten Körper, also ein Modell für den Körper der reellen Zahlen. Die Konstruktion ist mengentheoretisch und begrifflich ziemlich aufwändig. Sie setzt einen sicheren Umgang mit Äquivalenzrelationen, Restklassenbildung und Folgen voraus.

Es sei

also die Menge aller Cauchy-Folgen mit rationalen Gliedern. Dies ist eine riesige und erst mal unübersichtliche Menge. Sie enthält die Menge , indem wir jeder rationalen Zahl die konstante Folge zuordnen, für die jedes Folgenglied gleich ist. Eine konstante Folge ist trivialerweise eine Cauchy-Folge.



Lemma  

Die Menge der rationalen Cauchy-Folgen bildet mit der gliedweisen Addition und Multiplikation

einen kommutativen Ring.

Beweis  

Das Nullelement ist die konstante Nullfolge und das Einselement ist die konstante Einsfolge. Die Ringeigenschaften begründet man zuerst innerhalb der Menge aller rationalen Folgen. Da Addition und Multiplikation gliedweise ausgeführt werden, folgt die Assoziativität, die Kommutativität und die Distributivität der Verknüpfungen und die Eigenschaften der neutralen Elemente direkt aus den entsprechenden Eigenschaften von . Das Negative zu einer Folge ist die gliedweise negierte Folge. Die Abgeschlossenheit der Menge der Cauchy-Folgen unter Addition und Multiplikation folgt direkt aus Fakt, ebenso, dass die negierte Folge wieder eine Cauchy-Folge ist.


Eine rationale Nullfolge konvergiert nach Definition in gegen , und das soll auch in so sein. Insbesondere gibt es eine Vielzahl von Cauchy-Folgen, die gegen die gleiche Zahl konvergieren. Die Addition einer Nullfolge zu einer Folge ändert das Konvergenzverhalten und den Grenzwert, falls er existiert, nicht.

Das Produkt einer Nullfolge mit einer beliebigen Folge ist im Allgemeinen nicht wieder eine Nullfolge. Beispielsweise ist die Folge der Stammbrüche eine Nullfolge (in jedem archimedisch angeordneten Körper), wenn man sie aber mit der Folge der natürlichen Zahlen, also multipliziert, so erhält man die konstante Einsfolge, die keine Nullfolge ist. Innerhalb des Ringes der Cauchy-Folgen kann man aber Nullfolgen mit beliebigen Cauchy-Folgen multiplizieren und erhält wieder eine Nullfolge.



Lemma  

Im Ring der rationalen Cauchy-Folgen bildet die Menge der Nullfolgen

ein Ideal.

Beweis  

Die Summe von zwei Nullfolgen ist nach Fakt  (1) wieder eine Nullfolge. Sei nun eine Nullfolge und eine beliebige Folge aus , also eine Cauchy-Folge. Nach Fakt ist somit beschränkt und daher ist nach Fakt das Produkt wieder eine Nullfolge.


Bemerkung  

Im Cauchy-Folgenring ist die durch das Nullfolgenideal gegebene Äquivalenzrelation einfach zu verstehen. Zwei Cauchy-Folgen und sind äquivalent, wenn ihre Differenzfolge, also die durch

gegebene Folge, eine Nullfolge ist. Insbesondere sind alle Nullfolgen zur konstanten Nullfolge äquivalent. Wenn man an die Vorstellung denkt, dass eine Cauchy-Folge eine Lücke innerhalb der rationalen Zahlen entdeckt oder lokalisiert, so bedeutet die Äquivalenz von zwei Cauchy-Folgen, dass sie die gleiche Lücke lokalisieren. Man kann also erkennen, ob zwei Cauchy-Folgen die gleiche Lücke adressieren, auch wenn man die Lücke gar nicht kennt.


Wir definieren nun die Quotientenmenge unter dieser Äquivalenzrelation, also den Restklassenring nach dem von den Nullfolgen erzeugten Ideal, als Menge der reellen Zahlen, also

Wir sprechen vom Cauchy-Folgen-Modell für die reellen Zahlen.


Definition  

Der Restklassenring des Ringes der rationalen Cauchy-Folgen modulo des Ideals der Nullfolgen heißt Cauchy-Folgen-Modell der reellen Zahlen.

Unter der Identifzierungsabbildung

werden also alle Nullfolgen zu gemacht, und zwei rationale Folgen werden miteinander identifiziert, wenn ihre Differenz eine Nullfolge ist. Wir schreiben die zugehörigen Äquivalenzklassen als . Man kann jede Folge durch eine nullfolgenäquivalente Folge ersetzen, ohne den Wert der Restklasse zu ändern. Insbesondere kann man eine Cauchy-Folge an endlich vielen Gliedern abändern, ohne die Äquivalenzklasse zu ändern. Man kann sogar jede Klasse durch eine Dezimalbruchfolge repräsentieren und dadurch eine „schnellere Konvergenz“ erreichen und für unterschiedliche Klassen sicherstellen, dass ihr Konvergenzverhalten simultan ist.



Lemma  

Das Cauchy-Folgen-Modell der reellen Zahlen ist ein kommutativer Ring.

Beweis  

Dies folgt unmittelbar aus Fakt.


Auf der Quotientenmenge sind also die Verknüpfungen durch

gegeben. Deutlich aufwändiger ist es zu zeigen, dass unser konstruiertes Modell ein Körper ist. Die zusätzliche Eigenschaft ist, dass jedes von verschiedene Element ein inverses Element besitzt. Die entscheidenden Vorbereitungen haben wir aber schon in Fakt gemacht.



Lemma  

Das Cauchy-Folgen-Modell der reellen Zahlen ist ein Körper.

Beweis  

Dass ein kommutativer Ring vorliegt, wurde schon in Fakt vermerkt. Wir müssen also noch zeigen, dass ein von verschiedenes Element ein inverses Element besitzt. Es sei eine Cauchy-Folge, die dieses repräsentiert. Diese Folge ist keine Nullfolge, da ja alle Nullfolgen unter der Restklassenabbildung auf das Nullelement abgebildet werden. Nach Fakt gilt somit eine der dort angegebenen Alternativen, d.h. es gibt ein und ein mit der Eigenschaft, dass für alle Folgenglieder entweder oberhalb von oder aber unterhalb von liegen. Betrachten wir den ersten Fall, wobei wir durch Abändern der ersten Folgenglieder, was die Äquivalenzklasse nicht ändert, annehmen können, dass alle Folgenglieder oberhalb von liegen. Nach Fakt ist dann die durch

gegebene inverse Folge ebenfalls eine Cauchy-Folge. Wegen

für alle ist auch

und somit ist eine inverse Klasse gefunden.


Ausgehend von der in Fakt formulierten Alternative: die rationale Cauchy-Folge ist eine Nullfolge, oder es gibt ein mit für fast alle[1] , oder mit für fast alle , kann man in , in positive und in negative Zahlen einteilen und somit eine (totale) Ordnungsrelation darauf definieren.



Lemma  

Beweis  

Die in Fakt beschriebenen Alternativen hängen nach Aufgabe nur von der Äquivalenzklasse ab. Daher ergibt sich durch das Lemma eine Zerlegung (des Cauchy-Folgen-Modells) der reellen Zahlen in die , in positive und in negative Zahlen. Dabei sind die positiven Zahlen unter Addition und unter Multiplikation abgeschlossen, d.h. es liegt wegen Aufgabe ein angeordneter Körper vor. Sei ein gegeben, das durch eine rationale Cauchy-Folge repräsentiert werde. Nach Fakt ist die Folge beschränkt und es gibt insbesondere eine natürliche Zahl mit

für alle . Damit gilt auch für die Restklassen

was bedeutet, dass archimedisch angeordnet ist.


Die Vollständigkeit der reellen Zahlen wird in zwei Schritten bewiesen. Zuerst wird gezeigt, dass die rationalen Cauchy-Folgen, mit denen wir gestartet sind, aufgefasst in , gegen ihre Klasse konvergiert, und dann, dass überhaupt jede reelle Cauchy-Folge konvergiert.



Lemma  

Eine rationale Cauchy-Folge

konvergiert im Cauchy-Folgen-Modell gegen die Äquivalenzklasse .

Beweis  

Da die rationale Zahlen sind, können wir sie direkt (als konstante Folgen) als Elemente in auffassen. Wir schreiben

Die Differenz von zum Folgenglied (in ) ist gleich der Klasse . Sei , , vorgegeben. Aufgrund der Cauchy-Eigenschaft gibt es ein derart, dass für alle

die Abschätzungen

gelten. Für ist damit auch die Differenzklasse zwischen und . Somit ist

für , was die Konvergenz bedeutet.


Die folgende Tabelle gibt die Beweiseidee des folgenden Satzes an.

Grenzwert
Erste Folge
Zweite Folge
Dritte Folge



Satz  

Beweis  

Es sei eine Cauchy-Folge in . D.h. jedes einzelne Folgenglied ist selbst durch eine rationale Cauchy-Folge repräsentiert. Für diese repräsentierende Folge schreiben wir , wobei der zweite Index der Folgenindex ist und der erste Index sich auf die zugehörige Restklasse bezieht. Wir können durch Übergang zu einer Teilfolge der .ten Folge annehmen, dass für jeden Stammbruch bereits für alle die Abschätzung

gilt. Es sei die zugehörige Diagonalfolge, ihre Folgenglieder sind also die rationalen Zahlen

Wir behaupten, dass diese Folge eine Cauchy-Folge ist und dass die vorgegebene Folge in gegen konvergiert. Sei also mit vorgegeben.[2] Aufgrund der Cauchy-Eigenschaft der Folge gibt es ein (das wir als mindestens annehmen können) derart, dass für alle die Abschätzung

gilt. Aufgrund von Fakt konvergiert die geeignet gewählte repräsentierende Folge gegen , und zwar mit der Eigenschaft, dass

für und somit auch

für hinreichend groß gilt. Somit ist insgesamt für

Durch den Vergleich

sieht man, dass eine Cauchy-Folge ist. Die zugehörige Klasse ist nach Fakt der Grenzwert davon. Die obige Abschätzung gilt dann auch für .


Wir halten insbesondere fest, dass es einen vollständigen archimedisch angeordneten Körper gibt.



Der Isomorphiesatz

Zum folgenden Satz vergleiche man Fakt. So wie die Dedekind-Peano-Axiome die natürlichen Zahlen eindeutig festlegen, werden die reellen Zahlen durch die Eigenschaften, die in einem vollständigen archimedisch angeordneten Körper zusammengefasst werden, eindeutig charakterisiert.



Satz  

Es gibt genau einen vollständigen archimedisch angeordneten Körper, die reellen Zahlen.

Genauer: Wenn zwei vollständige archimedisch angeordnete Körper und vorliegen, so gibt es einen eindeutig bestimmten bijektiven Ringhomomorphismus

Beweis  

Wir können davon ausgehen, dass der eine Körper das Cauchy-Folgen-Modell der reellen Zahlen ist, wobei den Ring aller rationalen Cauchy-Folgen und das Ideal der Nullfolgen bezeichnet. Der andere Körper sei mit bezeichnet. Beide Körper enthalten die rationalen Zahlen und ein Ringhomomorphismus bildet auf und auf ab. Ein Ringhomomorphismus respektiert auch die Quadrate. In einem vollständigen archimedisch angeordneten Körper sind die nichtnegativen Elemente nach Aufgabe genau die Quadrate, deshalb muss ein solcher Ringhomomorphismus auch positive Elemente in positive Elemente überführen. Da man in einem archimedisch angeordneten Körper die Konvergenz mit Stammbrüchen allein überprüfen kann, erhält eine solche Abbildung auch die Konvergenz. Da in nach Konstruktion und Fakt jedes Element Limes einer rationalen Cauchy-Folge ist, und diese auch in wegen der Vollständigkeit konvergiert, kann es nur eine solche Abbildung geben. Diese Überlegung zeigt zugleich, wie man die Abbildung ansetzen muss. Ein Element werde repräsentiert durch eine rationale Cauchy-Folge . Diese Folge konvergiert in gegen ein und man setzt . Dies ist wohldefiniert. Wenn man nämlich eine andere repräsentierende rationale Cauchy-Folge nimmt, so ist die Differenz zu eine Nullfolge und dann konvergieren nach Fakt  (1) die beiden Folgen in gegen das gleiche Element.

Aufgrund der Verträglichkeit mit der Konvergenz haben wir das kommutative Diagramm

wobei eine Cauchy-Folge auf ihren Limes in abbildet. Nach Fakt ist diese Abbildung ein Ringhomomorphismus. Da die horizontale Abbildung surjektiv ist, ist auch ein Ringhomomorphismus.

Die Injektivität gilt für jeden Ringhomomorphismus zwischen Körpern. Zum Nachweis der Surjektivität von sei . Nach Fakt gibt es eine Dezimalbruchfolge, die gegen konvergiert. Da diese Dezimalbruchfolge eine rationale Cauchy-Folge ist, gehört sie zu und definiert ein Element in , das durch auf abgebildet wird. Insgesamt ist also ein bijektiver Ringhomomorphismus.


Nachdem wir nachgewiesen haben, dass die reellen Zahlen durch ihre axiomatisch fixierten Eigenschaften eindeutig festgelegt sind, werden wir in Zukunft nur noch mit diesen Axiomen und daraus abgeleiteten Eigenschaften arbeiten, die Konstruktion der reellen Zahlen mit Hilfe der Cauchy-Folgen wird in den Hintergrund treten. Den Körper der reellen Zahlen bezeichnen wir mit .



Fußnoten
  1. Das bedeutet für alle bis auf endlich viele.
  2. Da wir schon wissen, dass ein archimedisch angeordneter Körper vorliegt, müssen wir nur die Stammbrüche betrachten.